
Overview
This manual is a reference for the Signal Hound SM200A spectrum analyzer programming interface

(API). The API provides a low-level set of C routines for interfacing the SM200A. The API is C ABI

compatible making is possible to be interfaced from most programming languages. See the code

examples folder to get started right away.

Contact Information
For all programming and technical questions, please email aj@signalhound.com.

For sales, email sales@signalhound.com.

Build/Version Notes
Version 1.0.0 – Initial release

PC Requirements and Setup
Windows Development Requirements

• Windows 7/8/10

• (C/C++ only) Windows C/C++ development tools and environment. Preferably Visual Studio

2008 or later. If Visual Studio 2012 is not used, then the VS2012 redistributables will need to

be installed.

• Library files sm_api.h, sm_api.lib, and sm_api.dll

PC and Other Requirements

• SM200A

• USB 3.0 connectivity provided through native USB 3.0. Native USB 3.0 is provided through 3rd

generation and later Intel CPUs. 3rd and 4th generation Intel CPU systems might require

updating USB 3.0 drivers to operate properly.

• (Recommended) Quad core Intel i5 or i7 processor, 4th generation or later.

• (Minimum) Dual core Intel i5 or i7 processor, 3rd generation or later.

Theory of Operation
Any application using the SM200 API will follow these steps to interact and perform measurements on

the device.

1. Open the device, and receive a handle to the device resources.

2. Configure the device.

3. Acquire measurements.

4. Stop acquisitions, abort the current operation.

5. Close the device.

6. (Recalibration)

Opening a Device
Opening and initializing a device through the API is performed through the smOpenDevice or

smOpenDeviceBySerial functions. These functions will perform the full initialization of the device

and if successful, will return an integer handle which can be used to reference the device for the

remainder of your program. See the list of all SM200 devices connected to the PC via the

smGetDeviceList function.

mailto:aj@signalhound.com
mailto:sales@signalhound.com

Configuring the Device
Once the device is open, the next step is to configure the device for a measurement. The available

measurement modes are swept analysis, real-time analysis, and IQ streaming. Each mode has specific

configurations routines, which set a temporary configuration state. Once all configuration routines

have been called, calling the smConfigure function copies the temporary configuration state into the

active measurement state and the device is ready for measurements. The provided code examples

showcase how to configure the device for each measurement mode.

Acquiring Measurements
After the device has been successfully configured, the API provides several functions for acquiring

measurements. Only certain measurements are available depending on the active measurement

mode. For example, IQ data acquisition is not available when the device is in a sweep measurement

mode.

Stopping the Measurements
Stopping all measurements is achieved through the smAbort function. This causes the device to

cancel or finish any pending operations and return to an idle state. Calling smAbort is never required,

as it is called by default if you attempt to change the measurement mode, but it can be useful to do

this.

• Certain measurement modes can consume large amounts of resources such as memory and

CPU usage. Returning to an idle state will free those resources.

• Returning to an idle state will help reduce power consumption.

Closing the Device
When finished making measurements, you can close the device and free all resources related to the

device with the smCloseDevice function. Once closed, the device will appear in the open device list

again. It is possible to open and close a device multiple times during the execution of a program.

Recalibration (TBD)
Recalibration is performed once each time the device is reconfigured. For instance, When the device is

configured for IQ streaming, the instrument and measurement is calibrated for the current

environment and will not be calibrated again until the device measurement is aborted and started

again (read: the device will not recalibrate in the middle of measurements, as this would interrupt

measurements such as IQ streaming or real-time analysis).

Large temperature changes affect measurements the most, and it is recommended to reconfigure the

device once a large temperature delta has been recorded. Current operating temperatures can be

measured with the smGetDeviceDiagnostics function.

Swept Spectrum Analysis
Swept spectrum analysis represents the common spectrum analyzer measurement of plotting

amplitude over frequency. In this measurement mode, the API returns sweeps from the receiver. The

API provides a simple interface through smGetSweep for acquiring single sweeps, or for high

throughput sweep measurements, the smStartSweep / smFinishSweep functions. Both the sweep

format and acquisition methods are described below.

Only 1 sweep configuration can be active at a time. Changing any sweep parameter requires

reconfiguring the device with a new sweep configuration.

Sweep Format
Sweeps are returned from the API as 1-dimensional arrays of power values. Each array element

corresponds to a specific frequency. The frequency of any given can be calculated as

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑁′𝑡ℎ 𝑠𝑎𝑚𝑝𝑙𝑒 𝑖𝑛 𝑠𝑤𝑒𝑒𝑝 = 𝑆𝑡𝑎𝑟𝑡𝐹𝑟𝑒𝑞 + 𝑁 ∗ 𝐵𝑖𝑛𝑆𝑖𝑧𝑒

where StartFreq and BinSize are reported in the smGetSweepSettings function.

Min and Max Sweep Arrays
Several functions in the SM200 API return two arrays for sweeps. They are typically named sweepMin

and sweepMax. To understand the purpose of both of these arrays, it is important to understand their

relation to the analyzer’s detector setting. Traditionally, spectrum analyzers offer several detector

settings, the most common being peak-, peak+, and average. The SM200 API reduces this to either

minmax and average. When the detector is set to minmax, the sweepMin array will contain the sweep

as if a peak- detector is running, and the sweepMax array will contain the sweep of a peak+ detector.

When average detector is enable, sweepMin and sweepMax will be identical arrays.

Sweeps are returned for swept analysis and real-time spectrum analysis. Generally, if you are not

interested in either the min or max sweep, simply passing a NULL pointer for this parameter will tell

the API you wish to ignore this sweep.

Most API users will only be interested in the sweepMax array as this will provide peak+ and average

detector results.

Blocking vs. Queued Sweep Acquisition
The simple method of acquiring sweeps is to use the smGetSweep function. This function starts a

sweep and blocks until the sweep is completed. This is adequate for most types of measurements, but

does not optimize for receiver sweep speed. USB latency can be very large compared to total

acquisition time. To eliminate USB latency, you will need to take advantage of the API sweep queuing

mechanisms.

The sweep start/finish function provide a way to eliminate USB latencies between sweeps which allows

the device to sustain the full sweep speed throughput. Using the smStartSweep/smFinishSweep

functions you can start up to ‘N’ sweeps which ensures the receiver is continuously acquiring data for

the next sweep. Using a circular buffer approach, you can ensure that there is no down time in sweep

acquisition. See an example of this in the code examples.

Sweep Speed
This sweep speed is related to the parameter set in smSetSweepSpeed. See the description for

smSetSweepSpeed for more information.

The SM200A has 3 sweeps speeds depending on the user’s configuration. The sweep speed is primarily

set by the user explicitly, except in a few cases. The user can also configure the API to automatically

choose the fastest sweep speed. The sweep speeds are described below.

Slow/Narrow – For spans below 5MHz, the API will operate in a slow sweep. The sweep is

accomplished by dwelling at a LO frequency. This is necessary for the low RBWs that accompany the

narrow spans. The API will use this sweep speed below 5 MHz regardless of the users sweep speed

selection.

Normal – At this speed the SM200A steps the LO in 39.0625MHz steps. This mode offers better RF

performance than fast sweep mode, with a sweep speed reduction of about 3X.

Fast – At this speed, the SM200A steps the LO in 156.25MHz steps to accomplish up to a 1THz sweep

speed.

Real-Time Spectrum Analysis
The API provides methods for performing real-time spectrum analysis up to 160MHz in bandwidth.

Real-time spectrum analysis is accomplished for the SM200A using 50% overlapping FFTs with zero-

padding to accomplish arbitrary RBWs. Spans above 40MHz utilize the FPGA to perform this processing

which limits the RBW to 30kHz. Spans 40MHz and below are processed on the PC and lower RBWs can

be set. See the Real-Time RBW Restrictions for more information.

RBW directly affects the 100% POI of signals in real-time mode.

Real-time measurements are performed over short consecutive time frames and returned to the user

as frame and sweeps representing spectrum activity over these time periods. The duration of these

time periods is usually around 30ms.

Real-Time Frame
Real-time spectrum analysis provides two types of measurements, the sweep and the frame. The

frame is a 2-dimensional grid representing frequency on the x-axis and amplitude levels on the y-axis.

Each index in the grid is the percentage of time the signal persisted at this frequency and amplitude.

If a signal existed at this location for the full duration of the frame, the percentage will be close to 1.0.

An index which contains the value 0.0 infers that no spectrum activity occurred at that location during

the frame acquisition.

The sweep size is always an integer multiple of the frame width, which means the bin size of the

frame is easily calculated. The vertical spacing can be calculated using the frame height, reference

level, and frame scale (specified by the user in dB).

Figure 1: An example of a frame plotted as a gray scale image, mapping the density values between
[0.0,1.0] to gray scale values between [0,255]. The frame shows a persistent CW signal near the
center frequency and a short-lived CW signal.

Figure 2: The same frame above as is plotted in Spike, where density values are mapped onto a color
spectrum.

Real-Time Sweep
The sweeps returned in real-time spectrum analysis are the result of applying the detector to all FFTs

that occur during the real-time frame period. A min/max detector will hold the min and maximum

amplitudes seen during the frame period. The average detector will average all sweeps together

during this period.

Streaming IQ Data
The API provides methods for acquiring up to 50MS/s streaming IQ data. IQ data is provided as

interleaved 32-bit floating IQ samples scaled to mW. The IQ samples are corrected for amplitude

flatness, IQ phase and amplitude imbalance, and phase flatness. The IQ data stream can be tuned to

any frequency within the SM200 frequency range.

Sample Rate, Decimation, and Bandwidth
The IQ data stream can be decimated by powers of two down to 12.207kS/s (decimation of 4096). An

optional software filter can be enabled for decimations between 1 and 8. Decimations up to 8 are

performed on the SM200 FPGA using half band filters. Higher decimations are performed on the PC.

The PC software filter is optional for decimations between 1 and 8. If the software filter is disabled the

FPGA half band filters are the only alias filter used for these decimation stages and there will be

aliased signals in the roll off regions of the IQ bandwidth. Disabling the software filter will reduce CPU

load of the IQ data stream at the cost of this aliasing.

 For decimations above 8, the software filter is always enabled and the bandwidth of the filter is

selectable. The cutoff frequency of the filter must obey the Nyquist frequency for the selected sample

rate. The downsample filter sizes cannot be changed and thus the roll off transition region is a fixed

size for each decimation setting.

Polling Interface
The API for the IQ data stream is a polling style interface, where the application must request IQ data

in blocks that will keep up with the device acquisition of data. The API internal circular buffer can store

up to 1 second worth of IQ data before data loss occurs. It is the responsibility of the user’s

application to poll the IQ data fast enough data loss does not occur.

Wideband IQ Acquisitions
The SM200A can be configured to perform 500MS/s short burst acquisitions up to 32k samples.

Reference Level and Sensitivity
There are two ways to set the sensitivity of the receiver, through the RF configuration routine

smSetRFConfig, or through the reference level. The RF configuration routine allows full control over

the preamp and attenuator settings of the receiver. When either the preamp or attenuator setting is

set to auto, the reference level parameter takes over. The preamp and attenuator settings are set to

auto by default.

The reference level setting will automatically adjust the sensitivity to have the most dynamic range for

signals at or near (~5dB) below the reference level. If you know the expected input signal level of

your signal, setting the reference level to 5dB above your expected input will provide the most

dynamic range. Using the reference level, you can also ensure the receiver does not experience an

ADC overload by setting a reference level well above input signal level ranges.

The reference level parameter is the suggested method of controlling the receiver sensitivity.

GPS
The internal SM200 GPS communicates to the API on initialization, during all active measurements,

and when requested through the smGetGPSInfo function. It does not perform active communication

to the PC at any time other than these.

NMEA sentences are updated once per second and timestamps are updated every time the GPS has a

chance to communicate with the PC. This means, several consecutive sweeps within a 1 second frame

have the chance to update the NMEA information at most once, and a provide a new timestamp for

each sweep.

Acquiring GPS Lock
The GPS will automatically lock with no external assistance. You can query the state of the GPS lock

with either the smIsGPSLocked function, or by examining the return status of smGetGPSInfo. From

a cold start, expect a lock within the first few minutes. A warm or hot start should see a lock much

quicker.

GPS Time Stamping
When the GPS is locked, IQ data and sweep timestamping occurs using the internal GPS PPS signal

and NMEA information. Once the GPS data is valid, timestamping occurs immediately and required no

user intervention. Until the GPS is locked, timestamping occurs with the system clock, which has a

typical accuracy of +/- 16ms.

Thread Safety
The SM200 API is not thread safe. A multi-threaded application is free to call the API from any number

of threads as long as the function calls are synchronized. Not synchronizing your function calls will

lead to undefined behavior.

Multiple Devices and Multiple Processes
The API is capable of managing multiple devices within one process. If each process the API manages

a list of open devices to prevent a process from opening a device more than once. You may open

multiple devices by specifying the serial number of the device directly or allowing the API to discover

them automatically.

If you wish to use the API in multiple processes, it is the user’s responsibility to manage a list of

devices to prevent the possibility of opening a device twice from two different processes. Two process

communicating to the same device will result in undefined behavior. One possible way to manage

inter-process information is to use a named mutex on a Windows system.

Status Codes and Error Handling
All functions return an SmStatus error code. SmStatus is an enumerated type representing the

success of a given function call. The integer values associated with each status provides information

about whether a function call succeded or failed.

An integer value of zero indicates no error or warnings. Negative integer status values indicate errors

and positive values represent warnings.

A descriptive string of each status type can be retrieved using the smGetErrorString function.

Functions
All functions other that initialization functions take a device handle as the first parameters. This

integer is obtained after opening the device through one of the API openDevice() functions. This

handle uniquely identifies the receiver for the duration of the application execution, or until

smCloseDevice is called.

Each function returns an error code which can provide warnings or errors related to the execution of

the function. There are many cases where you will need to monitor these codes to determine the

success or failure of an operation. See a list of common error codes and their descriptions in the

Appendix.

Common Error Codes
This sections documents some of the more common error codes and their meaning. For a full list of

status codes, see the API header file and the API function list in this document.

Negative error codes represent errors and are suffixed with ‘Err’. When an error code is returned, the

operation requested did not complete. Positive error codes are warnings and indicate that the

function/operation completed successfully, but the user might need to take some action.

smNoError Returned when a function returns successfully.

smInvalidDeviceErr Returned when the device handle provided does not match an open

device.

smSettingClamped Returned when one or more parameters what clamped to a valid

range.

smInvalidParameterErr Returned when one or more parameters is not valid. For instance, if an

enum parameter does not match the set of possible values, this error
code is returned.

smNullPtrErr Returned when one or more required pointer parameters is NULL.

Pointer parameters that can be set to NULL are noted in the parameter
descriptions in the Functions section of this document.

smGetDeviceList
SmStatus smGetDeviceList(int *serials, int *deviceCount);

Parameters

serials Pointer to an array of integers.

deviceCount Pointer to integer. The integer value should indicate the size of the

serials array. If the function returns successfully, deviceCount will be

set to the number devices found on the system. deviceCount will not

exceed the initial size passed to the function.

Description

This function is used to retrieve the serial number of all unopened SM200 devices connected to the PC.

The maximum number of devices to be returned is 8. The serial numbers returned can then be used to

open specific devices with the smOpenDeviceBySerial function.

When the function returns successfully, the serials array will contain deviceCount number of

unique SM200 serial numbers.

Return Values

smNullPtrErr One or more required pointer parameters was NULL.

smOpenDevice
SmStatus smOpenDevice(int *device);

Parameters

device Pointer to integer.

Description

Claim the first unopened SM200 detected on the system. If the device is opened successfully, a handle

to the function will be returned through the device pointer. This handle can then be used to refer to

this device for all future API calls.

Return Values

smDeviceNotFoundErr Unable to find/open an SM200 receiver.

smOpenDeviceBySerial
SmStatus smOpenDeviceBySerial(int *device, int serialNumber);

Parameters

device Pointer to integer.

serialNumber Serial number of the device you wish to open.

Description

This function is similar to smOpenDevice except it allows you to specify the device you wish to open.

This function is often used in conjunction with smGetDeviceList when managing several SM200

devices on one PC.

Return Values

smNullPtrErr One or more required pointer parameters was NULL.

smDeviceNotFoundErr The device specified could not be found.

smCloseDevice
SmStatus smCloseDevice(int device);

Parameters

device Device handle.

Description

This function should be called when you want to release the resources for a device. All resources

(memory, etc.) will be released, and the device will become available again for use in the current

process. The device handle specified will no longer point to a valid device and the device must be re-

opened again to be used. This function should be called before the process exits, but it is not strictly

required.

Return Values

smInvalidDeviceErr The device handle specified does not point to an open device.

smPreset
SmStatus smPreset(int device);

Parameters

Description

Return Values

smGetDeviceInfo
SmStatus smGetDeviceInfo(int device, SmDeviceType *deviceType, int

*serialNumber, int *firmwareVersion);

Parameters

device Device handle.

deviceType Pointer to SmDeviceType, to contain the device model number. Can be

NULL.

serialNumber Pointer to integer. If this function returns successfully, the integer

pointed to will contain the specified devices serial number. Can be

NULL.

firmwareVersion Pointer to integer. If this function returns successfully, the integer

pointed to will contain the specified devices firmware version. Can be

NULL.

Description

This function returns basic information about a specific SM200 receiver. Also see

smGetDeviceDiagnostics and smGetCalInfo.

Return Values

smInvalidDeviceErr The device handle specified does not point to a valid device.

smGetDeviceDiagnostics
SmStatus smGetDeviceDiagnostics(int device, float *voltage, float *current,

float *temperature);

Parameters

device Device handle.

voltage Pointer to float, to contain measured device voltage. Can be NULL.

current Pointer to float, to contain measured device current. Can be NULL.

temperature Pointer to float, to contain current device internal temperature. Can be

NULL.

Description

This function returns operational information about a specific SM200 receiver. Also see

smGetDeviceInfo and smGetCalInfo.

Return Values

smInvalidDeviceErr The device handle specified does not point to a valid device.

smSetRFConfig
SmStatus smSetRFConfig(int device, SmRFConfig config);

Parameters

device Device handle.

config RF configuration struct. For more information, see SmRFConfig.

Description

Set the receiver sensitivity parameters. For more information, see Reference Level and Sensitivity.

Return Values

smInvalidParameterErr One or more parameters is not in the valid input range.

smGetRFConfig
SmStatus smGetRFConfig(int device, SmRFConfig *config);

Parameters

device Device handle.

config Pointer to SmRFConfig struct.

Description

Retrieve the receiver sensitivity parameters.

Return Values

smNoError No error.

smNulltPtrErr One or more required pointer parameters is NULL.

smSetRefLevel
SmStatus smSetRefLevel(int device, double refLevel);

Parameters

refLevel Set the reference level of the receiver.

Description

The reference level controls the sensitivity of the receiver by setting the attenuation and gain of the

receiver to optimize measurements for signals at or below the reference level. This function will set

the gain and attenuation settings set in smSetRFConfig to auto. See Reference Level and Sensitivity

for more information. The new reference level will not take effect until the device is reconfigured.

Return Values

smSettingsClamped The reference level was clamped to a valid range.

smGetRefLevel
SmStatus smGetRefLevel(int device, double *refLevel);

Parameters

refLevel Pointer to double.

Description

If this function returns successfully, refLevel will contain the current set reference level of the

receiver.

Return Values

smNullPtrErr One more required pointer parameters is NULL.

smSetPreselector
SmStatus smSetPreselector(int device, SmBool enabled);

Parameters

enabled Specify whether to enable the SM200 preselector.

Description

Configure the SM200 preselector. This setting controls the preselector for all measurement modes.

This setting will not take effect until the device is reconfigured.

Return Values

smInvalidParameterErr The enabled parameter does not match the possible input values.

smGetPreselector
SmStatus smGetPreselector(int device, SmBool *enabled);

Parameters

enabled Pointer to SmBool data type.

Description

Retrieve the last configured preselector state.

Return Values

smNullPtrErr One or more required pointer parameters is NULL.

smConfigGpio

smWriteGpioImm

smReadGpioEvents

smSetGpioSweep

smWriteSPI

smSetExternalReference
SmStatus smSetExternalReference(int device, SmBool enabled);

SmStatus smGetExternalReference(int device, SmBool *enabled);

Parameters

device Device handle

enabled When true, the 10MHz out port on the SM200A is enabled.

Description

The function allows you to enable the 10MHz out port on the SM200A. If enabled, the current

reference being used by the SM200A (as specified by smSetReference) will be output on the 10MHz

out port.

Return Values

smInvalidConfigurationErr The device is not currently in an idle state.

smSetReference
SmStatus smSetReference(int device, SmReference reference);

SmStatus smGetReference(int device, SmReference *reference);

Parameters

device Device handle

reference Specify the 10MHz reference for the SM200A.

Description

Update the receiver to use either the internal time base reference or use a reference present on the

10MHz in port. The device must be in the idle state (call smAbort) for this function to take effect. If

the function returns successfully, verify the new state with the smGetReference function.

Return Values

smNoError No error.

smInvalidConfigurationErr The device is not currently in an idle state. Call smAbort and

try again.

smInvalidParameterErr The reference parameter does not match the possible SmReference

enum value.

smIsGPSLocked
SmStatus smIsGPSLocked(int device, SmBool *isLocked);

Parameters

device Device handle.

isLocked Pointer to boolean value.

Description

Returns true if the GPS is currently locked. Use this function to determine if GPS location, NMEA

messages, and time stamping are available.

Return Values

smNoError No Error.

smDeviceNotOpenErr Device specified is not open.

smNullPtrErr One or more required pointer parameters are NULL.

smSetSweep***
SmStatus smSetSweepSpeed(int device, SmSweepSpeed sweepSpeed);

SmStatus smSetSweepCenterSpan(int device, double center, double span);

SmStatus smSetSweepCoupling(int device, double rbw, double vbw, double

sweepTime);

SmStatus smSetSweepDetector(int device, SmDetector, SmVideoUnits videoUnits);

SmStatus smSetSweepScale(int device, SmScale scale);

SmStatus smSetSweepWindow(int device, SmWindowType window);

SmStatus smSetSweepSpurReject(int device, SmBool spurRejectEnabled);

Parameters

sweepSpeed Specify which device acquisition speed to use (if applicable). Auto

prioritizes the fast speed possible, while normal prioritizes accuracy.

center Specify the center frequency in Hz of the sweep.

span Specify the span in Hz of the sweep.

rbw Resolution bandwidth in Hz.

vbw Video bandwidth in Hz. Cannot be greater than rbw.

detector Specify the detector setting of the sweep.

scale Specify the units of the returned sweep. Available units are either dBm

or mV.

videoUnits Specify the video processing units as either logarithmic, voltage,

power, or sample.

window Specify the FFT window function.

sweepTime Suggest the total acquisition time of the sweep. Specified in seconds.

This parameter is a suggestion and will ensure RBW and VBW are first
met before increasing sweep time.

Description

Set of function which configure the sweep measurement mode of the receiver. These settings do not

take effect until the device is reconfigured.

Return Values

smInvalidParameterErr One or more settings parameters are invalid. (i.e. Invalid enum value)

smSettingClamped One or more parameter was clamped to a valid range.

smSetRealTime***
SmStatus smSetRealTimeCenterSpan(int device, double center, double span);

SmStatus smSetRealTimeRBW(int device, double rbw);

SmStatus smSetRealTimeDetector(int device, SmDetector detector);

SmStatus smSetRealTimeScale(int device, SmScale scale, double frameRef,

double frameScale);

SmStatus smSetRealTimeWindow(int device, SmWindowType window);

Parameters

center Specify the center frequency of the real-time band in Hz.

span Specify the span of the real-time band in Hz.

rbw Resolution bandwidth in Hz.

detector Specify the detector setting of the sweep.

scale Specify the units of the returned sweep. Available units are either dBm

or mV.

frameRef Sets the reference level of the real-time frame. (The amplitude of the

highest pixel in the frame)

frameScale Specify the height of the frame in dB. A common value is 100dB.

window Specify the FFT window function.

Description

Set of functions which configure the receiver’s real-time measurement mode. These settings do not

take effect until the device is reconfigured.

Return Values

smInvalidParameterErr One or more settings parameters are invalid. (i.e. Invalid enum value)

smSettingClamped One or more parameter was clamped to a valid range.

smSetIQ***
SmStatus smSetIQCaptureType(int device, SmIQCaptureType captureType);

SmStatus smSetIQCenterFreq(int device, double center);

SmStatus smSetIQSampleRate(int device, int decimation);

SmStatus smSetIQBandwidth(int device, SmBool enableSoftwareFilter, double

bandwidth);

Parameters

captureType Specify whether the device operates in the 500MS/s short burst

acquisition mode or 50MS/s streaming mode.

centerFreq Specify the center frequency of the IQ acquisition.

decimation Specify the decimation of the 50MS/s streaming mode.

enableSoftwareFilter Set to true to enable the software filter.

bandwidth Specify the bandwidth of the software filter.

Description

 Set of functions which configure the receiver’s IQ measurement mode. These settings do not take

effect until the device is reconfigured.

smConfigure
SmStatus smConfigure(int device, SmMode mode);

Parameters

device Device handle

mode Specifies the mode of operation the API will be in if the function

returns successfully.

Description

This function configures the receiver into a state determined by the mode parameter. All relevant

configuration routines must have already been called. This function calls smAbort to end the previous

measurement mode before attempting to configure the receiver. If any error occurs attempting to

configure the new measurement state, the previous measurement mode will no longer be active.

Return Values

smInvalidParameterErr The mode parameter does not match a valid SmMode value. If this

error is returned, no change in device state takes place.

smGetMeasMode
smStatus smGetMeasMode(int device, SmMode *mode);

Parameters

device Device handle.

mode Pointer to a SmMode enum type.

Description

Retrieve the active device measurement mode.

Return Values

smNullPtrErr One or more required pointer parameters is NULL.

smAbort
SmStatus smAbort(int device);

Parameters

device Device handle.

Description

This function ends the current measurement mode and puts the device into an idle state. Any current

measurements are completed and discarded, and will not be accessible after this function returns.

Return Values

smGetSweepParameters
SmStatus smGetSweepParameters(int device, double *actualRBW, double

*actualVBW, double *actualStartFreq, double *binSize, int *sweepSize);

Parameters

device Device handle.

actualRBW Pointer to double. The RBW used internally in Hz. Can be NULL.

actualVBW Pointer to double. The VBW used internally in Hz. Can be NULL.

sweepSize Pointer to double. The length of the sweep (the number of frequency

bins). Can be NULL.

firstBinFreq Pointer to double. Frequency in Hz of the first bin in the sweep. Can be

NULL.

binSize Pointer to double. Frequency spacing in Hz, between each frequency

bin in the sweep. Can be NULL.

windowBandwidth Pointer to double. Window function bandwidth. Accounts for zero-

padding. Can be NULL.

Description

Retrieves the sweep parameters for an active sweep measurement mode. This function should be

called after a successful device configuration to retrieve the sweep characteristics.

Return Values

smInvalidConfigurationErr The current measurement mode is not set to sweep.

smGetRealTimeParameters
SmStatus smGetRealTimeParameters(int device, double *actualRBW, int

*sweepSize, double *actualStartFreq, double *binSize, int *frameWidth, int

*frameHeight, double *poi);

Parameters

device Device handle.

actualRBW Pointer to double. The RBW used internally in Hz. Can be NULL.

sweepSize Pointer to double. The length of the sweep, in frequency bins. Can be

NULL.

firstBinFreq Pointer to double. Frequency in Hz of the first bin in the sweep. Can be

NULL.

binSize Pointer to double. Frequency spacing in Hz, between each frequency

bin in the sweep. Can be NULL.

frameWidth Pointer to double. The width of the real-time frame. Can be NULL.

frameHeight Pointer to double. The height of the real-time frame. Can be NULL.

framerate Pointer to double. The number of frames to be returned per seconds

by the API. Can be NULL.

windowBandwidth Pointer to double. Window function bandwidth. Accounts for zero-

padding. Can be NULL.

poi Pointer to double. 100% probability of intercept of a signal given the

current configuration. Can be NULL.

Description

Retrieve the real-time measurement mode parameters for an active real-time configuration. This

function is typically called after a successful device configuration to retrieve the real-time sweep and

frame characteristics.

Return Values

smInvalidConfigurationErr The current measurement mode is not set to real-time.

smGetIQParameters
SmStatus smGetStreamSettings(int device, double *sampleRate, double

*bandwidth);

Parameters

device Device handle.

bandwidth Pointer to double. The bandwidth of the configure IQ data stream. Can

be NULL.

sampleRate Pointer to double. The resulting sample rate of the receiver given the

configuration parameters. Can be NULL.

Description

Retrieve the IQ measurement mode parameters for an active IQ configuration. This function is

typically called after a successful device configuration to retrieve the IQ stream parameters.

Return Values

smInvalidConfigurationErr The current measurement mode is not set to IQ.

smGetSweep
SmStatus smGetSweep(int device, float *sweepMin, float *sweepMax, SmTime

*time);

Parameters

device Device handle.

sweepMin Pointer to sweep min array. Can be NULL.

sweepMax Pointer to sweep max array. Can be NULL.

time Pointer to time struct. Can be NULL.

Description

Perform a single sweep. Block until the sweep completes.

Return Values

smDeviceNotOpenErr Device specified is not open.

smStartSweep
SmStatus smStartSweep(int device, int pos);

Parameters

device Device handle.

pos Sweep queue position.

Description

Starts a sweep at the queue pos. If successful, this function returns immediately.

Return Values

smFinishSweep
SmStatus smFinishSweep(int device, int pos, float *sweepMin, float *sweepMax,

SmTime *time);

Parameters

device Device handle.

pos Sweep queue position.

sweepMin Pointer to user allocated space for the min sweep. Can be set to NULL.

sweepMax Pointer to user allocated space for the max sweep. Can be set to NULL.

time Pointer to user time struct. Can be set to NULL.

Description

Finishes the sweep specified at the queue pos. This function blocks until the sweep is complete.

Return Values

smNoError Device handle.

smGetRealTimeFrame
SmStatus smGetRealTimeFrame(int device, int frameWidth, int frameHeight,

float *frame, float *sweepMin, float *sweepMax, int *frameCount, int64_t

*timeSec, int64_t *timeNs);

Parameters

device Device handle.

frameWidth The width of the 2D frame. This value should match the frame width

returned in the SmRealTimeSettings struct.

frameHeight The height of the 2D frame. This value should match the frame height

returned in the SmRealTimeSettings struct.

float *frame Pointer to memory for the real-time frame. Must be (frameWidth *

frameHeight) floats in length.

sweepMin Pointer to memory for the min sweep. Can be set to NULL.

sweepMax Pointer to memory for the max sweep. Can be set to NULL.

frameCount Unique integer which refers to a real-time frame and sweep. The

frame count starts at zero following a device reconfigure and

increments by one for each frame.

timeSec Pointer to int64_t. Seconds since epoch for the returned frame. Can be

NULL. For real-time mode, this value represents the time at the end

of the real-time acquisition and processing of this given frame. It is
approximate.

timeNs Pointer to int64_t. Ns of given second. Can be NULL. For real-time

mode, this value represents the time at the end of the real-time
acquisition and processing of this given frame. It is approximate.

Description

Retrieve a single real-time frame. See Real-Time Spectrum Analysis for more information.

Return Values

smInvalidConfigurationErr The current measurement mode is not set to real-time.

smGetIQ
SmStatus smGetIQ(int device, float *iqBuf, int iqBufSize, double *triggers, int

triggerBufSize, int64_t *timeSec, int64_t *timeNs, SmBool purge, int *overRange, int

*sampleLoss, int *samplesRemaining);

Parameters

device Device handle.

iqBuf Pointer to user allocated buffer of floats. The buffer size must be at

least (iqBufSize * 2) 32-bit floats. Cannot be NULL.

iqBufSize Specifies the number of IQ samples to be retrieved from the smGetIQ

function. Must be greater than zero.

triggers Pointer to user allocated array of doubles. The buffer must be at least

triggerBufSize number of doubles long. The pointer can also be NULL

to indicate you do not wish to receive external trigger information.

triggerBufSize Specify the maximum number of external trigger events to receive.

Once the maximum number of external triggers are recorded to the
user buffer, any remaining triggers that occur within the collected IQ
block will be lost.

timeSec Seconds since epoch. The time of the first IQ sample returned. Can be

NULL.

purge When set to smTrue, any buffered IQ data in the API is purged before

returned beginning the IQ block acquisition. See the section on
Streaming IQ Data for more detailed information.

overRange Set by the API when an input overload condition is detected. A

detected event does not necessarily correlate to the IQ data block

returned. Once returned, the internal overRange flag is cleared. Can

be NULL.

sampleLoss Set by the API when a sample loss condition occurs. If enough IQ data

has accumulated in the API circular buffer, the buffer is cleared and
the sample loss flag is set. If purge is set to true, the sample flag will

always be set to SM_FALSE. Can be NULL.

samplesRemaining Set by the API, returns the number of samples remaining in the IQ

circular buffer. Can be NULL.

Description

Retrieve one block of IQ data as specified by the user. This function blocks until the data requested is

available.

Return Values

smNullPtrErr One or more required pointer parameters was NULL.

smInvalidParameterErr iqBufSize was less than 1.

smInvalidConfigurationErr Device specified is not configured in IQ measurement mode.

smGetGPSInfo
SM_API SmStatus smGetGPSInfo(int device, SmBool refresh, SmBool *updated, int64_t

*timeSec, double *latitude, double *longitude, double *altitude, char *nmea, int

*nmeaLen);

Parameters

device Device handle.

refresh When set to true and the device is not in a streaming mode, the API

will request the latest GPS information.

updated Pointer to boolean parameter. Will be set to true if the GPS position

and NMEA data has been updated since the last time the user called

this function. An updated time stamp will set the updated parameter to

true. Can be set to NULL.

timeSec Number of seconds since epoch as reported by the GPS NMEA

sentences. Last reported value by the GPS. Can be NULL.

latitude Latitude in decimal degrees. Can be NULL.

longitude Longitude in decimal degrees. Can be NULL.

altitude Altitude in meters. Can be NULL.

nmea Pointer to user allocated array of char. The length of this array is

specified by the nmeaLen parameter. Can be set to NULL.

nmeaLen Pointer to an integer. The integer will initially specify the length of the

nmea buffer. If the nmea buffer is shorter than the NMEA sentences to

be returned, the API will only copy over nmeaLen characters, including

the null terminator. After the function returns, nmeaLen will be the

length of the copied nmea string, including the null terminator. Can be

set to NULL. If NULL, the nmea parameter is ignored.

Description

Acquire the latest GPS information which includes a time stamp, location information, and NMEA

sentences.

Return Values

smGpsNotLockedErr The GPS does not have a lock. No information is available and this

function will return without setting any parameters.

smGetAPIVersion
const char* smGetAPIVersion();

Return Values

const char* The returned string is of the form

 major.minor.revision

 Ascii periods (‘.’) separate positive integers. Major/minor/revision are
not guaranteed to be a single decimal digit. The string is null

terminated. The string should not be modified or freed by the user. An

example string is below…

 [‘3’ | ‘.’ | ‘0’ | ‘.’ | ‘1’ | ‘1’ | ‘\0’] = “3.0.11”

smGetErrorString
const char* smGetErrorString(SmStatus status);

Parameters

status A valid SmStatus enumeration.

Description

Retrieve a descriptive string of a SmStatus enumeration. Useful for debugging and diagnostic

purposes.

Return Values

const char* A pointer to a non-modifiable null terminated string. The memory

should not be freed/deallocated.

Appendix
Code Examples
All code examples are distributed in the API download folder.

Other Programming Languages
The SM200 interface is C compatible which ensures is is possible to interface the API in most

languages that can call C functions. These languages include C++, C#, Python, Matlab, Labview, Java,

etc. Some examples of calling the SM200 API in these other languages are included in the code

examples folder.

The SM200 API consists of several enumerated(enum) types, which are often used as parameters.

These values can be treated as 32-bit integers when callings the API functions from other

programming languages. You will need to match the enumerated values defined in the API header file.

Real-Time RBW Restrictions
The table below outlines the RBW limitations in place in real-time mode.

Span Minimum RBW (Nuttall window) Maximum RBW (Nuttall window)

(> 40MHz) 30 kHz 1 MHz

(< 40MHz) 1.5 kHz 800 kHz

IQ Sample Rate Table
The table below outlines the available IQ decimations and corresponding sample rates. See the

software filter limitations in the next section.

Decimation Sample Rate Software Filter Downsampling

1 (Minimum) 50 MS/s Optional Hardware

2 25 MS/s Optional Hardware only

4 12.5 MS/s Optional Hardware only

8 6.25 MS/s Optional Hardware only

16 (50/16) MS/s Always enabled Hardware/Software

N = {32, 64, …} (50/N) MS/s Always enabled Hardware/Software

4096 (Maximum) (50/4096) MS/s Always enabled Hardware/Software

IQ Filtering and Bandwidth Limitations
The user can enable a baseband software filter on the IQ data with a selectable bandwidth. If the

software filter is disabled, the signal will only have been filtered by the hardware as described below.

The hardware uses several half-band filters to accomplish decimations 2,4, and 8 and there is non-

negligible aliasing between 0.8 and 1.0 of the sample rate. Software filtering will eliminate this

aliasing at the cost of a slightly smaller cutoff frequency.

Most users will want to enable the software IF filter for better rejection in the stop band, as well as the

convenience of a selectable IF bandwidth. Users may forgo the software filter to reduce CPU load on

the PC or if custom signal conditioning is performed.

Software filtering is enabled by default for decimations greater than 8.

When the software filter is disabled the usable bandwidth of the IQ signal is

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ = {
41.5 𝑀𝐻𝑧, 𝑑𝑒𝑐𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 1

𝑆𝑎𝑚𝑝𝑙𝑒 𝑅𝑎𝑡𝑒 ∗ 0.8, 𝑑𝑒𝑐𝑖𝑚𝑎𝑡𝑖𝑜𝑛 > 1

When the software filter is enabled the maximum bandwidth allowed is determined by the equation

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ = {
41.5 𝑀𝐻𝑧, 𝑑𝑒𝑐𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 1

𝑆𝑎𝑚𝑝𝑙𝑒 𝑅𝑎𝑡𝑒 ∗ 0.768, 𝑑𝑒𝑐𝑖𝑚𝑎𝑡𝑖𝑜𝑛 > 1

Estimating Sweep Size
It is useful to understand the relationship between sweep parameters and sweep size. It is not

possible to directly calculate the sweep size of a given configuration beforehand but it is possible to

estimate the sweep size to within a power of 2.

The equation that can be used to estimate sweep size is

𝑆𝑤𝑒𝑒𝑝 𝑆𝑖𝑧𝑒 (𝑒𝑠𝑡.) =
𝑆𝑝𝑎𝑛 ∗ 𝑊𝑖𝑛𝑑𝑜𝑤𝐵𝑊

𝑅𝐵𝑊

Where span and RBW are specified in Hz, and window bandwidth is specified in bins. Window

bandwidth is the noise bandwidth of the FFT window function used. See the Window Functions section

for more information.

Window Functions
Below are the window functions used in the SM200 API. The API uses zero-padding to achieve the

requested RBW so the noise bandwidth in this table should not be directly used, but instead, use the

windowBandwidth returned in the SmSweepSettings struct.

Type Noise Bandwidth (bins) Notes

Flat-Top 3.77 SRS flattop

Nuttall 2.02

Kaiser 1.79 α = 3

Blackman 1.73 α = 0.16

Chebyshev 1.94 α = 5

Hamming 1.36 α = 0.54, β = 0.46

Gaussian6dB 2.64 σ = 0.1

	Overview
	Contact Information

	Build/Version Notes
	PC Requirements and Setup
	Theory of Operation
	Opening a Device
	Configuring the Device
	Acquiring Measurements
	Stopping the Measurements
	Closing the Device
	Recalibration (TBD)

	Swept Spectrum Analysis
	Sweep Format
	Min and Max Sweep Arrays
	Blocking vs. Queued Sweep Acquisition
	Sweep Speed

	Real-Time Spectrum Analysis
	Real-Time Frame
	Real-Time Sweep

	Streaming IQ Data
	Sample Rate, Decimation, and Bandwidth
	Polling Interface

	Wideband IQ Acquisitions
	Reference Level and Sensitivity
	GPS
	Acquiring GPS Lock
	GPS Time Stamping

	Thread Safety
	Multiple Devices and Multiple Processes
	Status Codes and Error Handling
	Functions
	Common Error Codes
	smGetDeviceList
	smOpenDevice
	smOpenDeviceBySerial
	smCloseDevice
	smPreset
	smGetDeviceInfo
	smGetDeviceDiagnostics
	smSetRFConfig
	smGetRFConfig
	smSetRefLevel
	smGetRefLevel
	smSetPreselector
	smGetPreselector
	smConfigGpio
	smWriteGpioImm
	smReadGpioEvents
	smSetGpioSweep
	smWriteSPI
	smSetExternalReference
	smSetReference
	smIsGPSLocked
	smSetSweep***
	smSetRealTime***
	smSetIQ***
	smConfigure
	smGetMeasMode
	smAbort
	smGetSweepParameters
	smGetRealTimeParameters
	smGetIQParameters
	smGetSweep
	smStartSweep
	smFinishSweep
	smGetRealTimeFrame
	smGetIQ
	smGetGPSInfo
	smGetAPIVersion
	smGetErrorString

	Appendix
	Code Examples
	Other Programming Languages
	Real-Time RBW Restrictions
	IQ Sample Rate Table
	IQ Filtering and Bandwidth Limitations
	Estimating Sweep Size
	Window Functions

