

BB60C and BB60A Application
Programming Interface (API)
Programmers Reference Manual

Signal Hound | Overview 1

BB60C and BB60A Application Programming Interface (API)
Programmers Reference Manual

©2019, Signal Hound

1502 SE Commerce Ave, Suite 101

Battle Ground, WA

Phone 360-217-0112

October 5, 2020

Requirements, Operation, Function Definitions, Examples

This information is being released into the public domain in accordance with the Export Administration
Regulations 15 CFR 734

2 Overview | Signal Hound

Table of Contents

Overview ...4

Contact Information ... 4

Build/Version Notes ...4

What’s New in Version 4.0 ... 4
What’s New in Version 3.0 ... 5
What’s New in version 2.0 ... 5
Updating from Version 1.2 or Later ... 5

Requirements ..5

Theory of Operation ...6

Opening a Device ... 6
Configuring the Device ... 6
Initiating the Device ... 6
Retrieve Data from the Device ... 7
Abort the Current Mode .. 7
Closing the Device .. 7
Calibration .. 7

Modes of Operation ...8

Swept Analysis ... 8
Real-Time Analysis ... 9
I/Q Streaming ... 9
Audio Demodulation .. 10
Scalar Network Analysis ... 10

Multi-Threading ... 11

Multiple Devices and Inter-Process Device Management .. 11

API Functions ... 11

Common Status Codes ... 11
bbGetSerialNumberList .. 12
bbOpenDeviceBySerialNumber ... 12
bbOpenDevice.. 13
bbCloseDevice .. 14
bbConfigureAcquisition ... 14
bbConfigureCenterSpan ... 14
bbConfigureIQCenter ... 15
bbConfigureLevel ... 16
bbConfigureGain .. 16
bbConfigureSweepCoupling .. 17
bbConfigureProcUnits .. 19
bbConfigureIO .. 19
bbConfigureDemod .. 20
bbConfigureIQ .. 21
bbConfigureIQDataType .. 22
bbConfigureRealTime .. 22
bbConfigureRealTimeOverlap .. 23
bbInitiate .. 23

Signal Hound | Overview 3

bbFetchTrace ... 24
bbFetchRealTimeFrame ... 25
bbFetchAudio ... 26
bbGetIQ .. 27
bbQueryTraceInfo .. 28
bbQueryRealTimeInfo .. 29
bbQueryRealTimePoi ... 29
bbQueryStreamInfo ... 29
bbGetIQCorrection... 30
bbAbort .. 30
bbPreset ... 30
bbSelfCal .. 31
bbSyncCPUtoGPS ... 32
bbGetDeviceType ... 32
bbGetSerialNumber ... 33
bbGetFirmwareVersion .. 33
bbGetDeviceDiagnostics .. 33
bbAttachTg ... 34
bbIsTgAttached .. 34
bbConfigTgSweep .. 34
bbStoreTgThru ... 35
bbSetTg .. 35
bbSetTgReference .. 36
bbGetTgFreqAmpl .. 36
bbGetAPIVersion .. 37
bbGetErrorString .. 37

Appendix ... 38

Device Connection Errors .. 38
Firmware Version 7 (BB60C) .. 38

Code Examples ... 38
Manual Gain/Attenuation .. 38
I/Q Data Types ... 39
Using a GPS Receiver to Time-Stamp Data .. 39

Code Example ... 40
Bandwidth Tables... 40

4 Overview | Signal Hound

Overview
The manual is a reference for the Signal Hound BB60C/A application programming interface (API). The
API provides a set of C routines used to control the Signal Hound BB60A and BB60C. The API is C ABI
compatible, so it can be called from several other languages and environments such as Java, C#, Python,
C++, MATLAB, and LabVIEW.

This manual will describe the requirements and knowledge needed to program to the API. If you are
new to the API you should read the sections in this order: Build/Version Notes, Requirements, Theory of
Operation, and Modes of Operation.

If you want to start programming immediately, see the code examples found in the examples/ directory.

The Build/Version Notes details the available builds for the API and notes major changes to API versions.
The Requirements section details the physical and operational needs to use the API.
The Theory of Operation section details how to interface the device and covers every major component
a program will implement when interfacing a Signal Hound broadband device.
The Modes of Operation section attempts to teach you how to use the device in each of its operational
modes, from the required functions, to interpreting the data the device returns.
The API Functions section covers every function in depth. The knowledge learned in the Theory and
Modes of Operation sections will help you navigate the API functions.

Contact Information
We are interested in your feedback and questions. Please report any issues/bugs as soon as possible.
We will maintain the most up to date API on our website.

All programming and API related questions should be directed to aj@signalhound.com
All hardware/specification related questions should be directed to justin@signalhound.com

Build/Version Notes
Windows builds for x86 and x64 are available.
The Windows builds are compiled with Visual Studio 2012 and any application using this library will
require distributing the VS2012 redistributable libraries.
64-bit Linux versions are available on our downloads page. The Linux API is not always current.
Build notes for the Linux API are provided in the Linux SDK found on the Signal Hound website.
See the distributed change log in the Spike installer for API version specific changes.

What’s New in Version 4.0
Added support for the BB60C-2, a minor hardware revision to the BB60C. The non-deprecated functions
have not changed, so integrating the new BB60C-2 devices should require no software changes other
than updating the API DLL in the project.

Additionally, several deprecated functions have been removed. There are alternatives for each
deprecated function.

• bbFetchRaw: use bbGetIQ instead.

• bbConfigureWindow: use bbConfigureSweepCoupling instead.

• bbQueryTimestamp: use bbGetIQ instead.

mailto:aj@signalhound.com
mailto:justin@signalhound.com

Signal Hound | Requirements 5

What’s New in Version 3.0
Version 3.0 coincides with the release of the SpikeTM, Signal Hounds latest spectrum analyzer software.
With this release comes the ability to open specific BB60C devices. BB60A devices lack the firmware to
perform this task. See bbGetSerialNumberList and bbOpenDeviceBySerialNumber for more information.

What’s New in version 2.0
Version 2.0 and greater introduces support for the BB60C as well as numerous performance
improvements and flexible I/Q data streaming (see Modes of Operation: I/Q Streaming). The API can
target both the BB60A and BB60C with virtually no changes to how one interfaces the API.

Updating from Version 1.2 or Later
This section contains notes of interest for users who are currently using version 1.2 of the API and who
are updating their code base to use version 2.0.

• Function names and the API file names may have changed from an earlier version. This is due to
making the API device agnostic. Functionally the API remains the same, so simply updating to the
newer naming scheme will be all that is necessary to interface a newer API.

• Intermediate frequency (IF) streaming has been replaced with I/Q streaming but IF streaming can
still be performed. See bbInitiate for more information on how to set up IF streaming.

• bbQueryDiagnostics has been deprecated and replaced with bbGetDeviceDiagnostics. This change
removes unnecessary access to hardware diagnostic information specific to the BB60A.

Requirements
Windows Development Requirements

• Windows 7/8/10

• Windows C/C++ development tools/environment. Preferably Visual Studio 2008 or later. If
Visual Studio 2012 is not used, then the VS2012 redistributables will need to be installed.

• The API header file. (bb_api.h)

• The API library (bb_api.lib) and dynamic library (bb_api.dll) files.

• The ftd2xx.dll will need to be present in the working directory or present in the system path.

Linux Development Requirements

• 64-bit Linux operating system. (Tested and developed on Ubuntu 18.04 and CentOS7)

• Modern C++ compiler (Built using g++)

• The API header file. (Included in SDK)

• The API shared library (Included in SDK)

• FTDI USB shared library (Included in SDK and available for download from manufacturer)

• libusb-1.0 shared library (Available from most package managers)

• Administrator(root) access to either run applications which use the API or install rules to allow
non-root access to the device.

General Requirements

• A basic understanding of RF spectrum analysis.

• A Signal Hound BB60 spectrum analyzer.

6 Theory of Operation | Signal Hound

• Dual/Quad core Intel i-series processors, preferably 3rd generation (Ivy Bridge) and later. Real-
time analysis may be inadequate on hardware less performant than this. Most aspects other
than real-time analysis will perform as expected with no issues on the suggested hardware.

Theory of Operation
The flow of any program interfacing a BB series device will be as follows.

1) Open a BB60 device using the bbOpen** functions.
2) Configure the device for a measurement.
3) Initiate the device and specify the mode of operation.
4) Retrieve data from the device.
5) Abort the current mode of operation.
6) Repeat steps 1-5 if desired.
7) Close the device.
- Calibration

The API provides functions for each step in this process. Each step is described in more detail below.

Opening a Device
Before attempting to open a device programmatically, it must be physically connected to a USB 3.0 port
with the provided cable. Ensure the front facing LED is solid green. Once the device is connected it can
be opened. The function bbOpenDevice provides this functionality. This function returns an integer
handle to the device which was opened. Up to eight devices may be connected and interfaced through
our API using the handle. The integer handle returned is required for every function call in the API, as it
uniquely identifies which device you are interfacing.

Configuring the Device
Once the device is opened, it must be configured. The API provides several configuration routines and
measurement modes. Most of this manual discusses configuring the device. In the Modes of Operation
section, each operating mode and its relevant configuration routines are discussed. All configuration
functions will modify a devices’ global state. Device state is discussed more in the next section (Initiating
the Device). The API provides configurations routines for groupings of related variables. Each
configuration function is described in depth in the API functions section. All relevant configuration
routines should be invoked prior to initialization to ensure a proper device state. Certain functions will
enforce boundary conditions, and will note when either a parameter is invalid or has been clamped to
the min/max possible value. Ensuring each routine configures successfully is required to ensure proper
device operation. Different modes of operation will necessitate different boundary conditions. Each
function description will detail these boundaries. We have also provided helpful macros in the header
file to help check against these boundaries.

Initiating the Device
Each device has two states.

1) A global state set through the API configuration routines.
2) An operational/running state.

All configuration functions modify the global state which does not immediately affect the operation of
the device. Once you have configured the global state to your liking, you may initiate the device into a

Signal Hound | Theory of Operation 7

mode of operation, in which the global state is copied into the running state. At this point, the running
state is separate and not affected by future configuration function calls.

The spectrum analyzer has multiple modes of operation. The bbInitiate function is used to initialize the
device and enter one of the operational modes. The device can only be in one operational mode at a
time. If bbInitiate is called on a device that is already initialized, the current mode is aborted before
entering the new specified mode. The operational modes are described in the Modes of Operation
section.

Retrieve Data from the Device
Once a device has been successfully initialized you can begin retrieving data from the device. Every
mode of operation returns different types and different amounts of data. The Modes of Operation
section will help you determine how to collect data from the API for any given mode. Helper routines
are also used for certain modes to determine how much data to expect from the device.

Abort the Current Mode
Aborting the operation of the device is achieved through the bbAbort function. This causes the device
to cancel any pending operations and return to an idle state. Calling bbAbort explicitly is never
required. If you attempt to initiate an already active device, bbAbort will be called for you. Also if you
attempt to close an active device, bbAbort will be called. There are a few reasons you may wish to call
bbAbort manually though.

- Certain modes combined with certain settings consume large amounts of resources such as
memory and the spawning of many threads. Calling bbAbort will free those resources.

- Certain modes such as real-time spectrum analysis consume many CPU cycles, and they are
always running in the background whether or not you are collecting and using the results they
produce.

- Aborting an operational mode and spending more time in an idle state may help to reduce
power consumption.

Closing the Device
When you are finished, you must call bbCloseDevice. This function attempts to safely close the USB 3.0
connection to the device and clean up any resources which may be allocated. A device may also be
closed and opened multiple times during the execution of a program. This may be necessary if you want
to change USB ports, or swap a device.

Calibration
Calibration is an important part of the device’s operation. The device is temperature sensitive and it is
important a device is re-calibrated when significant temperature shifts occur (+/- 2 °C). Signal Hound
spectrum analyzers are streaming devices and as such cannot automatically calibrate itself without
interrupting operation/communication (which may be undesirable). Therefore, we leave calibration to
the programmer. The API provides two functions for assisting with live calibration,
bbGetDeviceDiagnostics and bbSelfCal. bbGetDeviceDiagnostics can be used to retrieve the internal
device temperature at any time after the device has been opened. If the device ever deviates from its
temperature by 2 degrees Celcius or more we suggest calling bbSelfCal. Calling bbSelfCal requires the
device be open and idle. After a self-calibration occurs, the global device state is undefined. It is

8 Modes of Operation | Signal Hound

necessary to reconfigure the device before continuing operation. One self-calibration is performed upon
opening the device.

Note: The BB60C does not require the use of bbSelfCal for device calibration. Instead, for the BB60C, if
the device deviates in temperature, simply call bbInitiate again which will re-calibrate the device at its
current operating temperature.

Modes of Operation
Now that we have seen how a typical application interfaces with the API, let’s examine the different
modes of operation the API provides. Each mode will accept different configurations and have different
boundary conditions. In the next sections you will see how to interact with the API in each mode.

For a more in-depth examination of each mode of operation (read: theory) refer to the Signal Hound
BB60 user manual.

Swept Analysis
Swept analysis represents the most traditional form of spectrum analysis. This mode offers the largest
amount of configuration options, and returns traditional frequency domain sweeps. A frequency domain
sweep displays amplitude on the vertical axis and frequency on the horizontal axis.

The configuration routines which affect the sweep results are

• bbConfigureAcquisition() – Configuring the detector and linear/log scaling

• bbConfigureCenterSpan() – Configuring the frequency range

• bbConfigureLevel() – Configuring reference level and internal attenuators

• bbConfigureGain() – Configuring internal amplifiers

• bbConfigureSweepCoupling() – Configuring RBW/VBW/Window function/sweep time

• bbConfigureProcUnits() – Configure VBW processing

Once you have configured the device, you will initialize the device using the BB_SWEEPING flag.

This mode is driven by the programmer, causing a sweep to be collected only when the program
requests one through the bbFetchTrace() functions. The length of the sweep is determined by a
combination of resolution bandwidth, video bandwidth and sweep time.

Once the device is initialized you can determine the characteristics of the sweep you will be collecting
with bbQueryTraceInfo(). This function returns the length of the sweep, the frequency of the first bin,
and the bin size (difference in frequency between any two samples). You will need to allocate two arrays
of memory, representing the minimum and maximum values for each frequency bin.

Now you are ready to call bbFetchTrace(). This is a blocking call that does not begin collecting and
processing data until it is called. Typical sweep times might range from 10ms – 100ms, but certain
settings can take much more time (full spans, low RBW/VBWs).

Determining the frequency of any point returned is determined by the function below, where ‘n’ starts
at zero for the first sample point.

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑛′𝑡ℎ 𝑠𝑎𝑚𝑝𝑙𝑒 𝑝𝑜𝑖𝑛𝑡 𝑖𝑛 𝑟𝑒𝑡𝑢𝑟𝑛𝑒𝑑 𝑠𝑤𝑒𝑒𝑝 = 𝑠𝑡𝑎𝑟𝑡𝐹𝑟𝑒𝑞 + 𝑛 ∗ 𝑏𝑖𝑛𝑆𝑖𝑧𝑒

Signal Hound | Modes of Operation 9

Real-Time Analysis
The API provides the functionality of a real-time spectrum analyzer for the full instantaneous bandwidth
of the device (20MHz for the BB60A, 27MHz for the BB60C). Using FFTs at an overlapping rate of 50%,
the spectrum results have no blind time (100% probability of intercept) for events as short as 4.8us at
full amplitude (at 631kHz RBW). The RBW shape is restricted to the Nuttall window, and VBW is not
configurable.

The configuration routines which affect the spectrum results are

• bbConfigureAcquisition() – Configure detector and linear/logarithmic scale

• bbConfigureCenterSpan() – Configure center frequency and span of no more than
the devices maximum instantaneous bandwidth, specified in the header macros.

• bbConfigureLevel() – Configure reference level and attenuators

• bbConfigureGain() – Specify internal amplifiers

• bbConfigureSweepCoupling() – Specify RBW

• bbConfigureRealTime() – Specify the real-time update rate and frame scale

The number of sweep results far exceeds a program’s capability to acquire, view, and process, therefore
the API combines sweeps results for a user specified amount of time. It does this in two ways. One, is
the API either max holds or averages the sweep results into a standard sweep.

Also, the API creates an image frame which acts as a density map for every sweep result processed
during a period. Both the sweep and density map are returned at rate specified by the function
bbConfigureRealTime.

An alpha frame is also provided by the API. The alphaFrame is the same size as the frame and each index
correlates to the same index in the frame. The alphaFrame values represent activity in the frame. When
activity occurs in the frame, the index correlating to that activity is set to 1. As time passes and no
further activity occurs in that bin, the alphaFrame exponentially decays from 1 to 0. The alpha frame is
useful to determine how recent the activity in the frame is and useful for plotting the frames.

 For a full example of using real-time see the code examples.

I/Q Streaming
The API can be used to stream I/Q data up to 40MS/s. I/Q data can be retrieved as 32-bit complex floats
or 16-bit complex shorts. I/Q data provided as 32-bit floats are corrected for IF flatness and RF leveling.
I/Q data returned as 16-bit shorts is provided as full scale, only correcting for IF flatness and the user
must apply a correction value to recover the fully amplitude corrected I/Q data.

The I/Q data can be decimated by powers of 2 up to a decimation of 8192. The API provides users a
customizable bandpass filter cutoff frequency at any sample rate.

The I/Q data stream can be tuned to any frequency within the BB60 frequency range.

See the following functions for configuring and retrieving I/Q data.

• bbConfigureIQCenter() – Set the center frequency of the I/Q data stream.

• bbConfigureLevel() – Set the measurement reference level.

10 Modes of Operation | Signal Hound

• bbConfigureIO() – Configure the BNC ports of the BB60.

• bbConfigureIQ() – Specify the decimation and bandwidth of the I/Q data stream.

• bbConfigureIQDataType() – Specify return type of I/Q data.

• bbInitiate() – Start streaming.

• bbQueryStreamInfo() – Get I/Q rate info.

• bbGetIQCorrection() – Get I/Q scaling for 16-bit acquisitions.

• bbGetIQ() – Retrieve I/Q data.

Once configured, initialize the device with the BB_STREAMING mode and the BB_STREAM_IQ flag. Data
acquisition begins immediately. The API buffers ~3/4 second worth of I/Q samples in a circular buffer.
Samples can be retrieved with the bbGetIQ function. If you wish to retrieve all samples, it is the
responsibility of the user’s application to poll the samples fast enough to prevent the APIs internal
buffers from accumulating too much I/Q data. We suggest a separate polling thread and synchronized
data structure (buffer) for retrieving the samples and using them in your application.

NOTE: Decimation and filtering occur on the PC and can be processor intensive on certain hardware.
Please characterize the processor load.

Audio Demodulation
Audio demodulation can be achieved using bbConfigureDemod(), bbFetchAudio(), and
bbInitiate(). See bbConfigureDemod() to see which types of demodulation can be performed.
Settings such as gain, attenuation, reference level, and center frequency affect the underlying signal to
be demodulated.

bbConfigureDemod() is used to specify the type of demodulation and the characteristics of the filters.
Once desired settings are chosen, use bbInitiate() to begin streaming data. Once the device is
streaming it is possible to continue to change the audio settings via bbConfigureDemod() as long as the
updated center frequency is not +/- 8 MHz of the value specified when bbInitiate() was called. The
center frequency is specified in bbConfigureDemod().

Once the device is streaming, use bbFetchAudio() to retrieve 4096 audio samples for an audio sample
rate of 32k.

Scalar Network Analysis
When a Signal Hound tracking generator is paired together with a BB60C or BB60A spectrum analyzer,
the products can function as a scalar network analyzer to perform insertion loss measurements, or
return loss measurements by adding a directional coupler. Throughout this document, this functionality
will be referred to as tracking generator (or TG) sweeps.

Scalar Network Analysis can be realized by following these steps

1. Ensure a Signal Hound BB60C spectrum analyzer and tracking generator is connected to your PC.
2. Open the spectrum analyzer through normal means.
3. Associate a tracking generator to a spectrum analyzer by calling bbAttachTg. At this point, if a TG

is present, it is claimed by the API and cannot be discovered again until bbCloseDevice is called.
4. Configure the device as normal, setting sweep frequencies and reference level (or manually

setting gain and attenuation).

Signal Hound | Multi-Threading 11

5. Configure the TG sweep with the bbConfigTgSweep function. This function configures TG sweep
specific parameters.

6. Call bbInitiate with the BB_TG_SWEEP mode flag.
7. Get the sweep characteristics with bbQueryTraceInfo.
8. Connect the BB and TG device into the final test state without the DUT and perform one sweep

with bbFetchTrace. After one full sweep has returned, call bbStoreTgThru with the
TG_THRU_0DB flag.

9. (Optional) Configure the setup again still without the DUT but with a 20dB pad inserted into the
system. Perform an additional full sweep and call bbStoreTgThru with the TG_THRU_20DB.

10. Once store through has been called, insert your DUT into the system and then you can freely call
the get sweep function until you modify the configuration or settings.

If you modify the test setup or want to re-initialize the device with a new configuration, the store
through must be performed again.

Multi-Threading
The BB60 API is not thread safe. A multi-threaded application is free to call the API from any number of
threads if the function calls are synchronized. Not synchronizing your function calls will lead to
undefined behavior.

Multiple Devices and Inter-Process Device Management
The API can manage multiple devices within one process. In each process the API manages a list of open
devices to prevent a process from opening a device more than once. You may open multiple devices by
specifying the serial number or allowing the API to discover them automatically.

If you wish to use the API in multiple processes it is the user’s responsibility to manage a list of devices
to prevent the possibility of opening a device twice from two different processes. Two processes
communicating to the same device will result in undefined behavior. The two functions responsible for
opening new devices are not thread safe and access to those functions must also be restricted by the
programmer. One possible way to manage inter-process information like this is to use a named mutex
on a Windows system.

API Functions

Common Status Codes
All API functions return the type bbStatus. This section documents some of the more common status
codes. Negative error codes represent errors and are suffixed with ‘Err’. When an error code is returned,
the operation requested did not complete. Positive status codes are warnings and indicate the
operation completed, but the user might need to take some action. For a full list of status codes, see the
API header file.

bbNoError Function returned successfully. No warnings or errors.

bbNullPtrErr Returned when one or more required pointer parameter is null.

12 API Functions | Signal Hound

bbDeviceNotOpenErr Returned when the device handle provided does not match an open or
known device.

bbInvalidParameterErr Returned when one or more parameters provided does not match the
range of possible values.

bbDeviceNotConfiguredErr Returned if the device is not properly configured for the desired action.
Often occurs when the device needs to be configured for a specific
measurement mode before taking an action.

bbClampedToLowerLimit One or more parameters was clamped to a minimum lower limit.

bbClampedToUpperLimit One or more parameters was clamped to a maximum upper limit.

bbAdjustedParameter One ore more parameters to clamped to a minimum or maximum limit.

bbGetSerialNumberList
Get a list of available devices connected to the PC

bbStatus bbGetSerialNumberList(int serialNumbers[8], int *deviceCount);

Parameters

serialNumbers A pointer to an array of at minimum 8 contiguous integers. It is
undefined behavior if this array pointed to by serialNumbers is not 8
integers in length.

deviceCount Pointer to an integer.

Description

This function returns the devices that are unopened in the current process. Up to 8 devices may be
returned. The serial numbers of the unopened devices are returned for BB60Cs and a zero is returned
for each BB60A. The array will be populated starting at index 0 of the provided array. The integer
pointed to by deviceCount will equal the number of devices reported by this function upon returning.

bbOpenDeviceBySerialNumber
Open one Signal Hound device

bbStatus bbOpenDeviceBySerialNumber(int *device, int serialNumber);

Parameters

device Pointer to an integer. If successful, the integer pointed to by device will
contain a valid device number which can be used to identify a device for
successive API function calls.

serialNumber User provided serial number.

Description

The function attempts to open the device with serial number specified by the serialNumber parameter.
Only BB60C devices can be opened by specifying the serial number. If the serial number specified is zero,

Signal Hound | API Functions 13

the first BB60A found will be opened. If a device cannot be found matching the provided serial number,
the function will return unsuccessful. If a device is opened successfully, a handle to the device will be
returned through the device pointer which can be used to target that device for other API calls.

The function when successful is a blocking call and takes about 3 seconds to finish.

If you wish to target multiple devices or wish to target devices across processes, see Multiple Devices
and Inter-process Device Management.

Return Values

bbNoError No error, device number opened and returned successfully.

bbDeviceNotOpenErr The device was unable to open. This can be returned for many reasons
such as the device is not physically connected, eight devices are already
open or there is an issue with the USB 3.0 connection.

bbUncalibratedDevice This message is returned as a warning and notes the device has not
been calibrated. If you see this warning, contact Signal Hound.

bbOpenDevice
Open one Signal Hound broadband device

bbStatus bbOpenDevice(int *device);

Parameters

device If successful, a device number is returned. This number is used for all
successive API function calls.

Description

This function attempts to open the first BB60A/C it detects. If a device is opened successfully, a handle
to the device will be returned through the device pointer which can be used to target that device for
other API calls.

This function when successful, takes about 3 seconds to perform.

If you wish to target multiple devices or wish to target devices across processes, see Multiple Devices
and Inter-process Device Management.

Return Values

bbNoError No error, device number opened and returned successfully.

bbDeviceNotOpenErr The device was unable to open. This can be returned for many reasons
such as the device is not physically connected, eight devices are already
open or there is an issue with the USB 3.0 connection.

bbUncalibratedDevice This message is returned as a warning and notes the device has not
been calibrated. If you see this warning, contact Signal Hound.

14 API Functions | Signal Hound

bbCloseDevice
Close a BB60 device

bbStatus bbCloseDevice(int device);

Description

This function is called when you wish to close a connection with a device. Any resources the device has
allocated will be freed and the USB 3.0 connection to the device is terminated. The device closed will be
released and will become available to be opened again.

bbConfigureAcquisition
Change the detector type and choose between linear or log scaled returned sweeps

bbStatus bbConfigureAcquisition(int device, unsigned int detector, unsigned int
scale);

Parameters
detector Specifies the video detector. The two possible values for detector type

are BB_AVERAGE and BB_MIN_AND_MAX.

scale Specifies the scale in which sweep results are returned int. The four
possible values for scale are BB_LOG_SCALE, BB_LIN_SCALE,
BB_LOG_FULL_SCALE, and BB_LIN_FULL_SCALE.

Description

The detector parameter specifies how to produce the results of the signal processing for the final sweep.
Depending on settings, potentially many overlapping FFTs will be performed on the input time domain
data to retrieve a more consistent and accurate final result. When the results overlap detector chooses
whether to average the results together, or maintain the minimum and maximum values. If averaging is
chosen, the min and max trace arrays returned from bbFetchTrace() will contain the same averaged
data.

The scale parameter will change the units of returned sweeps. If BB_LOG_SCALE is provided, sweeps will
be returned as dBm values, If BB_LIN_SCALE is return, the returned units will be in milli-volts. If the full
scale units are specified, no corrections are applied to the data and amplitudes are taken directly from
the full scale input.

Return Values

bbInvalidDetectorErr The detector type provided does not match the list of accepted values.

bbInvalidScaleErr The scale provided does not match the list of accepted values.

bbConfigureCenterSpan
Change the center and span frequencies

Signal Hound | API Functions 15

bbStatus bbConfigureCenterSpan(int device, double center, double span);

Parameters

center Center frequency in hertz.

span Span in hertz.

 If you are configuring the device for I/Q streaming use a valid default
value (such as 20MHz) here as the span. The span in this function is
ignored for I/Q streaming but the API will still require a valid span be
provided. See the bbConfigureIQ function for configuring the I/Q
bandwidth.

Description

This function configures the operating frequency band of the broadband device. Start and stop
frequencies can be determined from the center and span.

- start = center – (span / 2)
- stop = center + (span / 2)

The values provided are used by the device during initialization and a more precise start frequency is
returned after initiation. Refer to the bbQueryTraceInfo() function for more information.

Each device has a specified operational frequency range. These limits are specified in the
BB60_MIN_FREQ, BB60_MAX_FREQ, and BB60_MAX_SPAN macros. The center and span provided cannot
specify a sweep outside of this range.

There is also an absolute minimum operating span of 20 Hz, but 200kHz is a suggested minimum.

Certain modes of operation have specific frequency range limits. Those mode dependent limits are
tested against during bbInitiate() and not here..

Return Values

bbInvalidSpanErr The span provided is less than the minimum acceptable span.

bbFrequencyRangeErr The calculated start or stop frequencies fall outside of the operational
frequency range of the specified device.

bbConfigureIQCenter
Set the center frequency of the device for I/Q acquisition

bbStatus bbConfigureIQCenter(int device, double centerFreq);

Parameters

centerFreq Center frequency in Hertz.

Description

16 API Functions | Signal Hound

Avoids the need to set a valid span for I/Q acquisition. When switching back to sweep acquisition from
I/Q acquisition, you will need to call the bbConfigureCenterSpan function again.

Return Values

See bbConfigureCenterSpan.

bbConfigureLevel
Change the attenuation and reference level of the device

bbStatus bbConfigureLevel(int device, double ref, double atten);

Parameters

ref Reference level in dBm.

atten Attenuation setting in dB. It is recommended to use BB_AUTO_ATTEN.

Description

When automatic atten is selected, the API uses the ref provided to choose the best gain settings for an
input signal with amplitude equal to reference level. If an atten other than BB_AUTO_ATTEN is specified
using bbConfigureLevel(), the ref parameter is ignored.

The atten parameter controls the RF input attenuator, and is adjustable from 0 to 30 dB in 10 dB steps.
The RF attenuator is the first gain control device in the front end.

When attenuation is automatic, the attenuation and gain for each band is selected independently. When
attenuation is not automatic, a flat attenuation is set across the entire spectrum.

It is recommended to set the gain and attenuation to automatic and set the reference level 5 dB higher
than the expected input power level.

Return Values

bbReferenceLevelErr The reference level provided exceeds 20 dBm.

bbAttenuationErr The attenuation value provided exceeds 30 db.

bbConfigureGain
Change the RF/IF gain path in the device

bbStatus bbConfigureGain(int device, int gain);

Parameters

gain A gain setting. It is recommended to use BB_AUTO_GAIN.

Description

To return the device to automatically choose the best gain setting, call this function with a gain of

Signal Hound | API Functions 17

BB_AUTO_GAIN.

The gain choices for each device range from 0 to BB#_MAX_GAIN.

When BB_AUTO_GAIN is selected, the API uses the reference level provided in bbConfigureLevel() to
choose the best gain setting for an input signal with amplitude equal to the reference level provided.

After the RF input attenuator (0-30 dB), the RF path contains an additional amplifier stage after band
filtering, which is selected for medium or high gain and bypassed for low or no gain.

Additionally, the IF has an amplifier which is bypassed only for a gain of zero.

For the highest gain settings, additional amplification in the ADC stage is used.

Return Values

bbInvalidGainErr This is returned if the gain value is outside the range of possible inputs.

bbConfigureSweepCoupling
Configure sweep processing characteristics

bbStatus bbConfigureSweepCoupling(int device, double rbw, double vbw, double
sweepTime, unsigned int rbwShape, unsigned int rejection);

Parameters

rbw Resolution bandwidth in Hz. RBWs can be set to arbitrary values, but
may be limited by mode of operation and span. See the bandwidth
tables in the Appendix for the Real-time RBW limitations.

vbw Video bandwidth (VBW) in Hz. VBW must be less than or equal to RBW.
VBW can be arbitrary. For best performance use RBW as the VBW.
When VBW is set equal to RBW, no VBW filtering is performed.

sweepTime Suggest a sweep time in seconds.

 In sweep mode, this value specifies how long the BB60 should sample
spectrum for the configured sweep. Larger sweep times may increase
the odds of capturing spectral events at the cost of slower sweep rates.
The range of possible sweepTime values run from 1ms -> 100ms or
[0.001 – 0.1].

rbwShape The possible values for rbwShape are BB_RBW_SHAPE_NUTTALL,
BB_RBW_SHAPE_FLATTOP, and BB_RBW_SHAPE_CISPR. This choice
determines the window function used and the bandwidth cutoff of the
RBW filter. BB_RBW_SHAPE_NUTTALL is default and unchangeable for
real-time operation.

rejection The possible values for rejection are BB_NO_SPUR_REJECT and
BB_SPUR_REJECT.

18 API Functions | Signal Hound

Description

The resolution bandwidth represents the bandwidth of spectral energy represented in each frequency
bin. For example, with an RBW of 10 kHz, the amplitude value for each bin would represent the total
energy from 5 kHz below to 5 kHz above the bin’s center. For standard bandwidths, the API uses the 3
dB points to define the RBW. For the CISPR RBW shape, 6dB bandwidths are used.

The video bandwidth is applied after the signal has been converted to frequency domain as power,
voltage, or log units. It is implemented as a simple rectangular window, averaging the amplitude
readings for each frequency bin over several overlapping FFTs. A signal whose amplitude is modulated at
a much higher frequency than the VBW will be shown as an average, whereas amplitude modulation at
a lower frequency will be shown as a minimum and maximum value.

Nuttall RBW shapes represent the bandwidths from a single power-of-2 FFT using our sample rate of 80
MSPS and the Nuttall window function. Each RBW is half of the previous. Using Nuttall RBWs can give
you the lowest possible bandwidth for any given sweep time, and minimizes processing power.
However, scalloping losses of up to 0.8 dB, occurring when a signal falls in between two bins, can cause
problems for some types of measurements. While RBW can be set arbitrarily when using the Nuttall
window, see the bandwidth table in the Appendix for a list of the RBWs that exhibit the most efficient
use of processing.

The Flat-top RBW shape achieves arbitrary RBW values by created variable sized bandwidth flat-top
window shapes. Flat-top windows provide low scalloping loss for the most accurate RF measurements.

The CISPR RBW shape uses a Gaussian window and zero-padding to achieve arbitrary RBWs. The RBW is
calculated using the 6dB cutoff value.

sweepTime applies to standard swept analysis, and is ignored for other operating modes. If in sweep
mode, sweepTime is the amount of time the device will spend collecting data before processing.
Increasing this value is useful for capturing signals of interest or viewing a more consistent view of the
spectrum. Increasing sweepTime can have a large impact on the amount of resources used by the API
due to the increase of data needing to be stored and the amount of signal processing performed. For
this reason, increasing sweepTime also decreases the rate at which you can acquire sweeps.

Rejection can be used to optimize certain aspects of the signal. Default is BB_NO_SPUR_REJECT, and
should be used in most cases. If you have a steady CW or slowly changing signal, and need to minimize
image and spurious responses from the device, use BB_SPUR_REJECT. Rejection is ignored outside of
standard swept analysis.

Return Values

bbBandwidthErr rbw fall outside device limits.

 vbw is greater than resolution bandwidth.

bbInvalidBandwidthTypeErr rbwShape is not one of the accepted values.

Signal Hound | API Functions 19

bbConfigureProcUnits
Configure video processing unit type

bbStatus bbConfigureProcUnits(int device, unsigned int units);

Parameters

units The possible values are BB_LOG, BB_VOLTAGE, BB_POWER, and
BB_BYPASS.

Description

The units provided determines what unit type video processing occurs in. The chart below shows which
unit types are used for each units selection.

For “average power” measurements, BB_POWER should be selected. For cleaning up an amplitude
modulated signal, BB_VOLTAGE would be a good choice. To emulate a traditional spectrum analyzer,
select BB_LOG. To minimize processing power, select BB_BYPASS.

BB_LOG dBm

BB_VOLTAGE mV

BB_POWER mW

BB_BYPASS No video processing

Return Values

bbInvalidVideoUnitsErr The value for units did not match any known value.

bbConfigureIO
Configure the two I/O ports on a device

bbStatus bbConfigureIO(int device, unsigned int port1, unsigned int port2);

Parameters

port1 The first BNC port may be used to input or output a 10 MHz time base
(AC or DC coupled), or to generate a general purpose logic high/low
output. Please refer to the example below. All possible values for this
port are found in the header file and are prefixed with “BB_PORT1”

port2 Port 2 can accept an external trigger or generate a logic output. Port 2 is
always DC coupled. All possible values for this port are found in the
header file and are prefixed with “BB_PORT2.”

Description

NOTE: This function can only be called when the device is idle (not operating in any mode). To ensure
the device is idle, call bbAbort().

20 API Functions | Signal Hound

There are two configurable BNC connector ports available on the device. Both ports functionality are
changed with this function. For both ports, ‘0’ is the default and can be supplied through this function to
return the ports to their default values. Specifying a ‘0’ on port 1 returns the device to an internal time
base and outputs the time base AC coupled. Specifying ‘0’ on port 2 emits a DC coupled logic low.

For external 10 MHz timebases, best phase noise is achieved by using a low jitter 3.3V CMOS input.

Configure combinations

Port 1 IO For port 1 only a coupled value must be ‘OR’ed
together with a port type. Use the ‘|’ operator to
combine a coupled type and a port type.

BB_PORT1_AC_COUPLED Denotes an AC coupled port

BB_PORT1_DC_COUPLED Denotes a DC coupled port

BB_PORT1_INT_REF_OUT Output the internal 10 MHz timebase

BB_PORT1_EXT_REF_IN Accept an external 10MHz time base

BB_PORT1_OUT_LOGIC_LOW

BB_PORT1_OUT_LOGIC_HIGH

Port 2 IO

BB_PORT2_OUT_LOGIC_LOW

BB_PORT2_OUT_LOGIC_HIGH

BB_PORT2_IN_TRIGGER_RISING_EDGE When set, the device is notified of a rising edge

BB_PORT2_IN_TRIGGER_FALLING_EDGE When set, the device is notified of a falling edge

Return Values

bbDeviceNotIdleErr This is returned if the device is currently operating in a mode. The
device must be idle to configure ports.

Example

This example shows how to configure an AC external reference input into port 1 and a emit a logic high
on port 2. Note the ‘|’ operation is used to specify the AC couple.

1. bbConfigureIO (
2. myDeviceNumber,
3. BB_PORT1_AC_COUPLED | BB_PORT1_EXT_REF_IN, // AC external reference in on port 1
4. BB_PORT2_OUT_LOGIC_HIGH // Output DC logic high on port 1
5.);

bbConfigureDemod
Configure audio demodulation operation

bbStatus bbConfigureDemod(int device, int modulationType, double freq, float IFBW,
float audioLowPassFreq, float audioHighPassFreq, float FMDeemphasis);

Signal Hound | API Functions 21

Parameters

modulationType Specifies the demodulation scheme, possible values are

 BB_DEMOD_AM/FM/Upper sideband (USB)/Lower Sideband (LSB)/CW.

freq Center frequency. For best results, re-initiate the device if the center
frequency changes +/- 8MHz from the initial value.

IFBW Intermediate frequency bandwidth centered on freq. Filter takes place
before demodulation. Specified in Hz. Should be between 500Hz and
500kHz.

audioLowPassFreq Post demodulation filter in Hz. Should be between 1kHz and 12kHz Hz.

audioHighPassFreq Post demodulation filter in Hz. Should be between 20 and 1000Hz.

FMDeemphasis Specified in micro-seconds. Should be between 1 and 100.

Description

Below is the overall flow of data through our audio processing algorithm.

This function can be called while the device is active.

Return Values

Note: If any of the boundary conditions are not met, this function will return with no error but the
values will be clamped to its boundary values.

bbConfigureIQ
Configure the digital IQ data stream

bbStatus bbConfigureIQ(int device, int downsampleFactor, double bandwidth);

Parameters

downsampleFactor Specify a decimation rate for the 40MS/s IQ digital stream.

bandwidth Specify a bandpass filter width on the IQ digital stream.

22 API Functions | Signal Hound

Description

This function is used to configure the digital IQ data stream. A decimation factor and filter bandwidth
are able to be specified. The decimation rate divides the IQ sample rate directly while the bandwidth
parameter further filters the digital stream.

For each given decimation rate, a maximum bandwidth value is specified to account for sufficient filter
roll off. That table is above. See bbGetIQ for retrieving IQ data.

bbConfigureIQDataType
Specify the data type of the I/Q data returned from the API

bbConfiguredIQDataType(int device, bbDataType dataType);

Parameters

dataType Data type can be specified either as 32-bit complex floats or 16-bit
complex shorts.

Description

See Appendix: I/Q Data Types for more information.

bbConfigureRealTime
Configure the real-time frame parameters

bbStatus bbConfigureRealTime(int device, double frameScale, int frameRate);

Parameters

frameScale Specifies the height in dB of the real-time frame. The value is ignored if
the scale is linear. Possible values range from [10 – 200].

Decimation Rate Sample Rate (IQ pairs/s) Maximum Bandwidth

1 40 MS/s 27 MHz

2 20 MS/s 17.8 MHz

4 10 MS/s 8.0 MHz

8 5 MS/s 3.75 MHz

16 2.5 MS/s 2.0 MHz

32 1.25 MS/s 1.0 MHz

64 625 kS/s 0.5 MHz

128 312.5 kS/s 0.25 MHz

256 156.250 kS/s 140 kHz

512 78.125 kS/s 65 kHz

1024 39062.5 S/s 30 kHz

2048 19531.25 S/s 15 kHz

4096 9765.625 S/s 8 kHz

8192 4882.8125 S/s 4 kHz

Signal Hound | API Functions 23

frameRate Specifies the rate at which frames are generated in real-time mode, in
frames per second. Possible values range from [4 – 30], where four
means a frame is generated every 250ms and 30 means a frame is
generated every ~33 ms.

Description

The function allows you to configure additional parameters of the real-time frames returned from the
API. If this function is not called a scale of 100dB is used and a frame rate of 30fps is used. For more
information regarding real-time mode see Modes of Operation : Real-Time Analysis.

bbConfigureRealTimeOverlap
Configure the real-time processing overlap rate

bbStatus bbConfigureRealTimeOverlap(int device, double advanceRate);

Parameters

advanceRate FFT advance rate. See description.

Description

By setting the advance rate users can control the overlap rate of the FFT processing in real-time
spectrum analysis. The advanceRate parameter specifies how far the FFT window slides through the
data for each FFT as a function of FFT size. An advanceRate of 0.5 specifies that the FFT window will
advance 50% the FFT length for each FFT for a 50% overlap rate. Specifying a value of 1.0 would mean
the FFT window advances the full FFT length meaning there is no overlap in real-time processing. The
default value is 0.5 and the range of acceptable values are between [0.5, 10]. Increasing the advance
rate reduces processing considerably but also increases the 100% probability of intercept of the device.

bbInitiate
Change the operating state of the device

bbStatus bbInitiate(int device, unsigned int mode, unsigned int flag);

Parameters

mode The possible values for mode are BB_SWEEPING, BB_REAL_TIME,
BB_AUDIO_DEMOD, and BB_STREAMING.

flag The default value should be zero.

 If the mode is equal to BB_STREAMING, the flag should be set to
BB_STREAM_IQ (0).

 flag can be used to inform the API to time stamp data using an external
GPS receiver. Mask the bandwidth flag (‘|’ in C) with BB_TIME_STAMP
to achieve this. See Appendix:Using a GPS Receiver to Time-Stamp
Data for information on how to set this up.

24 API Functions | Signal Hound

Description

bbInitiate() configures the device into a state determined by the mode parameter. For more
information regarding operating states, refer to the Theory of Operation and Modes of Operation
sections. This function calls bbAbort() before attempting to reconfigure. It should be noted, if an error
is returned, any past operating state will no longer be active.

Return Values

bbInvalidParameterErr The value for mode did not match any known value.

 In real-time mode, this value may be returned if the span limits defined
in the API header are broken. Also in real-time mode, this error will be
returned if the resolution bandwidth is outside the limits defined in the
API header.

bbAllocationLimitError This value is returned when the API is unable to allocate the necessary
memory to prepare the device for operation. The API is often liberal
with memory allocation due to the sheer amount of data being
processed. All memory allocation occurs in bbInitiate() and
deallocation occurs in bbAbort().

bbBandwidthErr This error is returned if your RBW is larger than your span. (Sweep
Mode)

bbFetchTrace
Get one sweep from a configured and initiated device

bbStatus bbFetchTrace(int device, int arraySize, double *min, double *max);
bbStatus bbFetchTrace_32f(int device, int arraySize, float *min, float *max);

Parameters

arraySize A provided arraySize. This value must be equal to or greater than the
traceSize value returned from bbQueryTraceInfo().

min Pointer to a double buffer, whose length is equal to or greater than
traceSize returned from bbQueryTraceInfo().

max Pointer to a double buffer, whose length is equal to or greater than
traceSize returned from bbQueryTraceInfo().

Description

Returns a minimum and maximum array of values relating to the current mode of operation. If the
detectorType provided in bbConfigureAcquisition() is BB_AVERAGE, the array will be populated with
the same values. Element zero of each array corresponds to the startFreq returned from
bbQueryTraceInfo().

Return Values

Signal Hound | API Functions 25

bbADCOverflow This warning is returned when the ADC detects clipping of the input
signal. This occurs when the maximum voltage has been reached. Signal
analysis and reconstruction become issues on clipped signals. To
prevent this, a combination of increasing attenuation, decreasing gain,
or increasing reference level (when gain is automatic) will allow for
more headroom.

bbUncalSweep This warning is returned if the sweep returned is invalid due to either
USB data loss during device acquisition or being unable to keep up with
the necessary processing to create the sweep. The sweep may be
discarded, and the function can be called again. This warning will only
be returned if the device firmware is at version 7 or greater. If you have
a device with an earlier firmware version and believe you are having
USB data loss issues, contact Signal Hound.

bbPacketFramingErr This error occurs when data loss or miscommunication has occurred
between the device and the API. During normal operation we do not
expect this error to occur. If you find this error occurs frequently, it may
be indicative of larger issues. If this error is returned, the data returned
is undefined. The device should be power cycled manually or with the
bbPreset routine.

bbDeviceConnectionErr Device connection issues were present in the acquisition of this sweep.
See Error Handling: Device Connection Errors.

bbUSBTimeoutErr The USB transfer timed out during the requested sweep. Causes may
include a faulty USB cable or high processor/kernel load. See Error
Handling: Device Connection Errors

bbFetchRealTimeFrame
Retrieve one real-time sweep and frame

bbStatus bbFetchRealTimeFrame(int device, float *minSweep float *maxSweep, float
*frame, float *alphaFrame);

Parameters

minSweep If this pointer is non-null, the min held sweep will be returned to the
user. If the detector is set to average, this array will be identical to the
maxSweep array.

maxSweep If this pointer is non-null, the max held sweep will be returned to the
user. If the detector is set to average, this array contains the averaged
results over the measurement interval.

colorFrame Pointer to a floating-point array. If the function returns successfully, the
contents of the array will contain a single real-time frame.

alphaFrame Pointer to a 32-bit floating point array. If the function returns
successfully, the contents of the array will contain the alphaFrame
corresponding to the frame. Can be NULL.

26 API Functions | Signal Hound

Description

This function is used to retrieve the real-time sweeps, frame, and alphaFrame. This function should be
used instead of bbFetchTrace for real-time mode. The sweep arrays should be ‘N’ values long, where N is
the sweep length returned from bbQueryTraceInfo. The frame and alphaFrame should be WxH values
long where W and H are the values returned from bbQueryRealTimeInfo. For more information see
Modes of Operation: Real-Time Analysis.

Return Values

bbDeviceConnectionErr Device connection issues were present in the acquisition of this sweep.
See Error Handling: Device Connection Errors.

bbUSBTimeoutErr The USB transfer timed out during the requested sweep. Causes may
include a faulty USB cable or high processor/kernel load. See Error
Handling: Device Connection Errors

bbPacketFramingErr This error occurs when data loss or miscommunication has occurred
between the device and the API. During normal operation we do not
expect this error to occur. If you find this error occurs frequently, it may
be indicative of larger issues. If this error is returned, the data returned
is undefined. The device should be power cycled manually or with the
bbPreset routine.

bbADCOverflow This warning is returned when the ADC detects clipping of the input
signal. This occurs when the maximum voltage has been reached. Signal
analysis and reconstruction become issues on clipped signals. To
prevent this, a combination of increasing attenuation, decreasing gain,
or increasing reference level (when gain is automatic) will allow for
more headroom.

bbFetchAudio
Retrieve 4096 audio samples

bbStatus bbFetchAudio(int device, float *audio);

Parameters

audio Pointer to an array of 4096 32-bit floating point values

Description

If the device is initiated and running in the audio demodulation mode, the function is a blocking call
which returns the next 4096 audio samples. The approximate blocking time for this function is 128 ms if
called again immediately after returning. There is no internal buffering of audio, meaning the audio will
be overwritten if this function is not called in a timely fashion. The audio values are typically -1.0 to 1.0,
representing full-scale audio. In FM mode, the audio values will scale with a change in IF bandwidth.

Return Values

Signal Hound | API Functions 27

bbDeviceConnectionErr Device connection issues were present in the acquisition of audio. See
Error Handling : Device Connection Errors.

bbGetIQ
Retrieve a block of I/Q data

bbStatus bbGetIQ(int device, bbIQPacket *pkt);
bbStatus bbGetIQUnpacked(int device, float *iqData, int iqCount, int *triggers, int
triggerCount, int purge, int *dataRemaining, int *sampleLoss, int *sec, int *nano);

Parameters

pkt Pointer to a bbIQPacket structure

Description

This function retrieves one block of I/Q data as specified by the bbIQPacket struct. The members of the
bbIQPacket struct and how they affect the acquisition are described below.

• iqData – Set by user, pointer to an array of 32-bit complex floating point values. Complex values
are interleaved real-imaginary pairs. This must point to a contiguous block of iqCount complex
pairs.

• iqCount – Set by user, specify the number of I/Q data pairs to return.

• triggers – Set by user, a pointer to an array of integers. If the external trigger input is active, and
a trigger occurs during the acquisition time, triggers will be populated with values which are
relative indices into the iqData array where external triggers occurred.

• triggerCount – Set by user, The size of the triggers array.

• purge – Set by user, specify whether to discard any samples acquired by the API since the last
time and bbGetIQ function was called. Set to BB_TRUE if you wish to discard all previously
acquired data, and BB_FALSE if you wish to retrieve the contiguous I/Q values from a previous
call to this function.

• dataRemaining – Set by API, how any I/Q samples are still left buffered in the API.

• sampleLoss – Set by API, returns BB_TRUE or BB_FALSE for whether the API had to drop data
due to the internal circular buffer filling. Will always return false if purge is true.

• sec – Set by API, the seconds since epoch representing the timestamp of the first sample in the
returned array.

• nano – Set by API, the nanoseconds representing the timestamp of the first sample in the
returned array.

The timestamps returned will either be synchronized to the GPS if it was properly configured or the PC
system clock if not. For timestamps generated by the system clock, one should only use the first
timestamp collected and use the index and sample rate to determine the time of a n individual sample.

The BB60 will report ~5k triggers per second. Use an adequate size trigger buffer if you wish to receive
all potential triggers. If the API has more triggers to report than the size of the buffer provided, any
excess triggers will be discarded.

bbGetIQUnpacked provides a method for retrieving I/Q data without needing the bbIQPacket struct.
Each parameter in bbGetIQUnpacked has a one-to-one mapping to variables found in the bbIQPacket

28 API Functions | Signal Hound

struct. This function serves as a convenience for creating bindings in various programming languages
and environments such as Python, C#, LabVIEW, MATLAB, etc. This function is implemented by taking
the parameters provided into the bbIQPacket struct and calling bbGetIQ.

Return Values

bbPacketFramingErr This error occurs when data loss or miscommunication has occurred
between the device and the API. During normal operation we do not
expect this error to occur. If you find this error occurs frequently, it may
be indicative of larger issues. If this error is returned, the data returned
is undefined. The device should be power cycled manually or with the
bbPreset() routine.

bbADCOverflow This warning is returned when the ADC detects clipping of the input
signal. This occurs when the maximum voltage has been reached. Signal
analysis and reconstruction become issues on clipped signals. To
prevent this, try a combination of increasing attenuation and decreasing
gain.

bbDeviceConnectionErr Device connection issues were present in the acquisition of data. See
Error Handling: Device Connection Errors.

bbQueryTraceInfo
Returns values needed to query and analyze traces

bbStatus bbQueryTraceInfo(int device, unsigned int *traceLen, double *binSize, double
*start);

Parameters

traceLen A pointer to an unsigned int. If the function returns successfully
traceLen will contain the size of arrays returned by bbFetchTrace.

binSize A pointer to a 64bit floating point variable. If the function returns
successfully, binSize will contain the frequency difference between two
sequential bins in a returned sweep. In Zero-Span mode, binSize refers
to the difference between sequential samples in seconds.

start A pointer to a 64bit floating point variable. If the function returns
successfully, start will contain the frequency of the first bin in a
returned sweep. In Zero-Span mode, start represents the exact center
frequency used by the API.

Description

This function should be called to determine sweep characteristics after a device has been configured
and initiated. For zero-span mode, startFreq and binSize will refer to the time domain values. In zero-
span mode startFreq will always be zero, and binSize will be equal to sweepTime/traceSize.

Signal Hound | API Functions 29

bbQueryRealTimeInfo
Query the frame size of the real-time frame

bbStatus bbQueryRealTimeInfo(int device, int *frameWidth, int *frameHeight);

Parameters

frameWidth Pointer to a 32-bit signed integer.

frameHeight Pointer to a 32-bit signed integer.

Description

This function should be called after initializing the device for Real-Time mode. This device returns the
frame size of the real-time frame configured.

bbQueryRealTimePoi
Get the configured 100% probability of intercept of the device configured for real-time spectrum analysis

bbStatus bbQueryRealTimePoi(int device, double *poi);

Parameters

poi Pointer to double. See description.

Description

When this function returns successfully, the value poi points to will contain the 100% probability of
intercept duration in seconds of the device as currently configured in real-time spectrum analysis. The
device must actively be configured and initialized in the real-time spectrum analysis mode.

bbQueryStreamInfo
Retrieve values need to query and analyze an I/Q data stream
bbQueryStreamInfo(int device, int *return_len, double *bandwidth, int
*samples_per_sec);

Parameters

return_len The number of I/Q samples pairs which will be returned by calling
bbFetchRaw. This value is part of the deprecated bbFetchRaw function
and is not needed if using the bbGetIQ function.

bandwidth The bandpass filter bandwidth, width in Hz. Width is specified by the
3dB rolloff points.

samples_per_sec The number of I/Q pairs to expect per second. (This parameter is no
longer required for I/Q streaming. You can pass NULL for this parameter
if you are configuring the device for I/Q data).

30 API Functions | Signal Hound

Description

Use this function to get the parameters of the I/Q data stream.

bbGetIQCorrection
Get correction constant for 16-bit complex short I/Q acquisitions

bbStatus bbGetIQCorrection(int device, float *correction);

Parameters

corrections Pointer to 32-bit float. The value correction points to will contain a
scalar which can be used to convert full scale I/Q data to amplitude
corrected I/Q. The formulas for these conversions are in Appendix: I/Q
Data Types. Cannot be null.

Description

Retrieve the I/Q correction factor for an active I/Q stream. This function should be called after
configuring and initiating the device for I/Q acquisitions.

bbAbort
Stop the current mode of operation

bbStatus bbAbort(int device);

Description

Stops the device operation and places the device into an idle state.

bbPreset
Trigger a device reset

bbStatus bbPreset(int device);

Description

This function exists to invoke a hard reset of the device. This will function similarly to a power
cycle(unplug/re-plug the device). This might be useful if the device has entered an undesirable or
unrecoverable state. Often the device might become unrecoverable if a program closed unexpectedly,
not allowing the device to close properly. This function might allow the software to perform the reset
rather than ask the user perform a power cycle.

Viewing the traces returned is often the best way to determine if the device is operating normally. To
utilize this function, the device must be open. Calling this function will trigger a reset which happens
after 2 seconds. Within this time you must call bbCloseDevice() to free any remaining resources and
release the device serial number from the open device list. From the time of the bbPreset() call, we
suggest 3 to more seconds of wait time before attempting to re-open the device.

Signal Hound | API Functions 31

Example

1. // Notes: Invoking a sleep in the main thread of execution may be undesirable
2. // in a GUI application. This function is best performed in a separate thread.
3. // The amount of time to Sleep is dependent on how fast the device will register
4. // on your machine after it resets. A longer sleep time may be preferred or multiple
5. // attempts to open the device until it returns bbNoError
6. bool PresetRoutine() {
7.
8. bbPreset(myID);
9. bbCloseDevice(myID);
10.
11. Sleep(3000); // Windows sleep function
12.
13. // Alternative 1: Assume it's ready
14. if(bbOpenDevice(&myID) == bbNoError)
15. return true;
16. else
17. return false;
18.
19.
20. // Alternative 2: Try a few times, it may not be ready at first
21. int trys = 0;
22. while(trys++ < 3) {
23. if(bbOpenDevice(&myID) == bbNoError)
24. return true;
25. else
26. Sleep(500);
27. }
28. return false;
29. }

bbSelfCal
Calibrate the device for significant temperature changes. BB60A only

bbStatus bbSelfCal(int device);

Description

This function causes the device to recalibrate itself to adjust for internal device temperature changes,
generating an amplitude correction array as a function of IF frequency. This function will explicitly call
bbAbort() to suspend all device operations before performing the calibration, and will return the
device in an idle state and configured as if it was just opened. The state of the device should not be
assumed, and should be fully reconfigured after a self-calibration.

Temperature changes of 2 degrees Celsius or more have been shown to measurably alter the
shape/amplitude of the IF. We suggest using bbGetDeviceDiagnostics() to monitor the device’s
temperature and perform self-calibrations when needed. Amplitude measurements are not guaranteed
to be accurate otherwise, and large temperature changes (10°C or more) may result in adding a dB or
more of error.

32 API Functions | Signal Hound

Because this is a streaming device, we have decided to leave the programmer in full control of when the
device in calibrated. The device is calibrated once upon opening the device through bbOpenDevice()
and is the responsibility of the programmer after that.

Note:
After calling this function, the device returns to the default state. Currently the API does not retain state
prior to the calling of bbSelfCal(). Fully reconfiguring the device will be necessary.

bbSyncCPUtoGPS
Synchronize a GPS reciever with the API

bbStatus bbSyncCPUtoGPS(int comPort, int baudRate);

Parameters:

comPort Com port number for the NMEA data output from the GPS reciever.

baudRate Baud Rate of the Com port.

Description:

This function is currently not support on the Linux operating system.

The connection to the COM port is only established for the duration of this function. It is closed when
the function returns. Call this function once before using a GPS PPS signal to time-stamp RF data. The
synchronization will remain valid until the CPU clock drifts more than ¼ second, typically several hours,
and will re-synchronize continually while streaming data using a PPS trigger input.

This function calculates the offset between your CPU clock time and the GPS clock time to within a few
milliseconds, and stores this value for time-stamping RF data using the GPS PPS trigger. This function
ignores time zone, limiting the calculated offset to +/- 30 minutes. It was tested using an FTS 500 from
Connor Winfield at 38.4 kbaud. It uses the “$GPRMC” string, so you must set up your GPS to output this
string.

Return Values:

bbGPSErr Returned when no GPS reciever was found, unable to establish
communication with the specified port, or unable to decipher the
GPRMC string.

bbGetDeviceType
Retrieve the model type of a device handle

bbStatus bbGetDeviceType(int device, int *type);

Parameters

type Pointer to an integer to receive the model type.

Signal Hound | API Functions 33

Description

This function may be called only after the device has been opened. If the device successfully opened,
type will contain the model type of the device pointed to by handle.

Possible values for type are BB_DEVICE_NONE, BB_DEVICE_BB60A, and BB_DEVICE_BB60C. These values
can be found in the bb_api header file.

bbGetSerialNumber
Retrieve the serial number of the device

bbStatus bbGetSerialNumber(int device, unsigned int *sid);

Parameters

sid Pointer to unsigned int which will be assigned the serial number of the
broadband device specified with device.

Description

This function may be called only after the device has been opened. The serial number returned should
match the number on the case.

bbGetFirmwareVersion
Determine the firmware version of a SignalHound broadband device

bbStatus bbGetFirmwareVersion(int device, int *version);

Parameters

version Pointer to an integer, will contain the firmware version of the specified
device if this function returns successfully.

Description

Use this function to determine which version of firmware is associated with the specified device.

bbGetDeviceDiagnostics
Retrieve the current internal device characteristics

bbStatus bbGetDeviceDiagnostics(int device, float *temperature, float *usbVoltage,
float *usbCurrent);

Parameters

temperature Pointer to 32-bit float. If the function is successful temperature will
point to the current internal device temperature, in degrees Celsius. See
“bbSelfCal” for an explanation on why you need to monitor the device
temperature.

34 API Functions | Signal Hound

voltageUSB USB operating voltage, in volts. Acceptable ranges are 4.40 to 5.25 V.

currentUSB USB current draw, in milliamps.

Description

Pass null to any parameter you do not wish to query.

The device temperature is updated in the API after each sweep is retrieved. The temperature is returned
in Celsius and has a resolution of 1/8th of a degree.

A USB voltage of below 4.4V may cause readings to be out of spec. Check your cable for damage and
USB connectors for damage or oxidation.

bbAttachTg
Pairs and open BB60 spectrum analyzer with a Signal Hound tracking generator

bbStatus bbAttachTg(int device);

Description

This function is a helper function to determine if a Signal Hound tracking generator has been previously
paired with the specified device.

Return Values

bbNotSupportedErr The device specified does not have the firmware version necessary to
support performing tracking generator sweeps.

bbIsTgAttached
Determine if a Signal Hound tracking generator is paired with the specified device

bbStatus bbIsTgAttached(int device, bool *attached);

Parameters

attached Pointer to a boolean variable. If this function returns successfully, the
variable attached points to will contain a true/false value as to whether
a tracking generator is paired with the spectrum analyzer.

Description

This function is a helper function to determine if a Signal Hound tracking generator has been previously
paired with the specified device.

bbConfigTgSweep
Configure a tracking generator sweep

Signal Hound | API Functions 35

bbStatus bbConfigureTgSweep(int device, int sweepSize, boolHighDynamicRange, bool
passiveDevice);

Parameters

sweepSize Suggested sweep size;

highDynamicRange Request the ability to perform two store throughs for an increased
dynamic range sweep.

passiveDevice Specify whether the device under test is a passive device (no gain).

Description

This function configures the tracking generator sweeps. Through this function you can request a sweep
size. The sweep size is the number of discrete points returned in the sweep over the configured span.
The final value chosen by the API can be different than the requested size by a factor of 2 at most. The
dynamic range of the sweep is determined by the choice of highDynamicRange and passiveDevice. A
value of true for both provides the highest dynamic range sweeps. Choosing false for passiveDevice
suggests to the API that the device under test is an active device (amplification).

bbStoreTgThru
Perform a store thru

bbStatus bbStoreTgThru(int device, int flag);

Parameters

flag Specify the type of store thru. Possible values are TG_THRU_0DB and
TG_THRU_20DB.

Description

This function, with flag set to TG_THRU_0DB, notifies the API to use the next trace as a thru (your 0 dB
reference). Connect your tracking generator RF output to your spectrum analyzer RF input. This can be
accomplished using the included SMA to SMA adapter, or anything else you want the software to
establish as the 0 dB reference (e.g. the 0 dB setting on a step attenuator, or a 20 dB attenuator you will
be including in your amplifier test setup).

After you have established your 0 dB reference, a second step may be performed to improve the
accuracy below -40 dB. With approximately 20-30 dB of insertion loss between the spectrum analyzer
and tracking generator, call saStoreTgThru with flag set to TG_THRU_20DB. This corrects for slight
variations between the high gain and low gain sweeps.

bbSetTg
Set the frequency and amplitude output of a paired tracking generator

bbStatus bbSetTg(int device, double frequency, double amplitude);

Parameters

36 API Functions | Signal Hound

frequency Set the frequency, in Hz, of the TG output

amplitude Set the amplitude, in dBm, of the TG output

Description

This function sets the output frequency and amplitude of the tracking generator. This can only be
performed is a tracking generator is paired with a spectrum analyzer and is currently not configured and
initiated for TG sweeps.

Return Values

bbTrackingGeneratorNotFound A tracking generator was not found to be paired with the device
specified.

bbDeviceNotConfiguredErr The API is currently configured and initiated for tracking generator
sweeps and the tracking generator cannot be controlled at this time.

bbSetTgReference
Configure the timebase for the TG44 and TG124

bbStatus bbSetTgReference(int device, int reference);

Parameters

reference A valid time base setting value. Possible values are TG_REF_UNUSED,
TG_REF_INTERNAL_OUT, and TG_REF_EXTERNAL_IN

Description

Configure the time base for the tracking generator attached to the device specified. When
TG_REF_UNUSED is specified additional frequency corrections are applied. If using an external reference
or you are using the TG time base frequency as the frequency standard for your system, you will want to
specify TG_REF_INTERNAL_OUT or TG_REF_EXTERNAL_IN so the additional corrections are not applied.

Return Values

bbTrackingGeneratorNotFound A tracking generator is not attached to the device.

bbDeviceNotConfigured The tracking generator is actively sweeping and cannot be configured.

bbGetTgFreqAmpl
Retrieve the last set TG configuration

bbStatus bbGetTgFreqAmpl(int device, double *frequency, double *amplitude);

Parameters

Signal Hound | API Functions 37

frequency The double variable that frequency points to will contain the last set
frequency of the TG output in Hz.

amplitude The double variable that amplitude points to will contain the last set
amplitude of the TG output in dBm.

Description

Retrieve the last set TG output parameters the user set through the saSetTg function. The setTg function
must have been called for this function to return valid values. If the TG was used to perform scalar
network analysis at any point, this function will not return valid values until the setTg function is called
again.

If a previously set parameter was clamped in the setTg function, this function will return the final
clamped value.

If any pointer parameter is null, that value is ignored and not returned.

Return Values

bbTrackingGeneratorNotFound No tracking generator has been attached to the BB device.

bbDeviceNotConfiguredErr The API is currently configured and initiated for tracking generator
sweeps and the tracking generator cannot be controlled at this time.

bbGetAPIVersion
Get an API software version string

const char* bbGetAPIVersion();

Return Values

const char* The returned string is of the form

 major.minor.revision

 Ascii periods (“.”) separate positive integers. Major/Minor/Revision are
not guaranteed to be a single decimal digit. The string is null
terminated. An example string is below ..

 [‘3’ | ‘.’ | ‘0’ | ‘.’ | ‘1’ | ‘1’ | ‘\0’] = “3.0.11”

bbGetErrorString
Produce an error string from an error code

const char* bbGetErrorString(bbStatus code);

Parameters

code A bbStatus value returned from an API call.

38 Appendix | Signal Hound

Description

Produce an ascii string representation of a given status code. Useful for debugging.

Return Values

const char* A pointer to a non-modifiable null terminated string. The memory
should not be freed/deallocated.

Appendix

Device Connection Errors

The API issues errors when fatal connection issues are present during normal operation of the device.
The two major errors in this category are bbPacketFramingErr and bbDeviceConnectionErr. These
errors are reported on fetch routines, as these routines contain most major device I/O.

bbPacketFramingErr – Packet framing issues can occur in low power settings or when large interrupts
occur on the PC (typically large system interrupts). This error can be handled by manually cycling the
device power, or programmatically by using the preset routine.

bbDeviceConnectionErr – Device connection errors are the result of major USB issues most commonly
being the device has lost power (unplugged). These errors should be handled by completely closing the
software and cycling the device power, or, if you wish for the software to remain open, call the function
bbCloseDevice before cycling the device power and re-opening the device as usual.

Firmware Version 7 (BB60C)
This firmware update has increased the stability of the BB60C on PCs that have a heavy CPU load or in
instances where there is random data loss over USB. Currently in the instance where a PC kernel load is
high, the PC may not be able to service the USB causing data loss to occur, and the BB60C API reports
device connection issues, requiring a device preset. This can also happen if there is (random) data loss
over USB 3.0 (rarer). This update resolves these issues by not failing on the connection issues and issuing
a warning on the fetch trace functions notifying a user to discard the sweep and try again. The benefit of
this is that the API and device remain connected and do not require a preset, often taking about 6
seconds. If you have a device that requires a firmware update, contact Signal Hound.

Code Examples
Code examples have been moved to the SDK.
https://signalhound.com/software/signal-hound-software-development-kit-sdk/

Manual Gain/Attenuation
Gain and attenuation are used to control the path the RF takes through the device. Selecting the proper
gain and attenuation settings greatly affect the dynamic range of the resulting signal. When gain and
attenuation are set to automatic, the reference level is used to control the internal amplifiers and
attenuators. Choosing a reference level slightly above the maximum expected power level ensures the
device engages the best possible configuration. Manually configuring gain and attenuation should only
be used after testing and observation.

https://signalhound.com/software/signal-hound-software-development-kit-sdk/

Signal Hound | Appendix 39

Additionally, when gain and attenuation are set to auto in sweep mode, the API can optimize the gain
and attenuation across the frequency range of the device. When using manual settings, it will use the
same gain/atten values across the entire span, which may be sub-optimal.

I/Q Data Types
I/Q data is returned from the bbGetIQ function either as 32-bit complex floats or 16-bit complex shorts
depending on the data type set in bbConfigureIQDataType. 16-bit shorts are twice as memory efficient
as floats but require more effort to convert to absolute amplitudes and may be less convenient to work
with.

When data is returned as 32-bit complex floats, the data is scaled to mW and the amplitude can be
calculated by the following equation.

Sample Power (dBm) = 10.0 * log10(re*re + im*im);

where re and im are the real and imaginary components of a single I/Q sample.

When data is returned as 16-bit complex shorts, the data is full scale and a correction must be applied
before you can measure mW or dBm. Values range from [-32768 to +32767]. To measure the power of a
sample using the complex short data type, three steps are required.

1) Convert from short to float.
a. float re32f = ((float)re16s / 32768.0);
b. float im32f = ((float)im16s / 32768.0);

i. This converts the short to a float in the range of [-1.0 to +1.0]
2) Scale the floats by the correction value returned from bbGetIQCorrection.

a. re32f *= correction;
b. im32f *= correction;

3) Calculate power
a. Sample Power (dBm) = 10.0 * log10(re32f*re32f + im32f*im32f);

Using a GPS Receiver to Time-Stamp Data
With minimal effort it is possible to determine the absolute time (up to 50ns) of the ADC samples. This
functionality is only available when the device is configured for IF or I/Q streaming. Additionally, this
functionality is only available for Windows operating systems. It does not work on Linux.

What you will need:

1) GPS Receiver capable providing NMEA data, specifically the GPRMC string, and a 1PPS output.
(Tested with Connor Winfield Xenith TBR FTS500)

2) The NMEA data must be provided via RS232 (Serial COM port) only once during application
startup, releasing the NMEA data stream for other applications such as a “Drive Test Solution”
to map out signal strengths.

Order of Operations:

1) Ensure correct operation of your GPS receiver.
2) Connect the 1PPS receiver output to port 2 of the device.

40 Appendix | Signal Hound

3) Connect the RS232 receiver output to your PC.
4) Determine the COM port number and baud rate of the data transfer over RS232 to your PC.
5) Open the device via bbOpenDevice
6) Ensure the RS232 connection is not open.
7) Use bbSyncCPUtoGPS to synchronize the API timing with the current GPS time. This function

will release the connection when finished.
8) Configure the device for I/Q streaming.
9) Before initiating the device, use bbConfigureIO and configure port 2 for an incoming rising edge

trigger via BB_PORT2_IN_TRIGGER_RISING_EDGE.
10) Call bbInitiate(id, BB_STREAMING, BB_TIME_STAMP). The BB_TIME_STAMP argument will tell

the API to look for the 1PPS input trigger for timing.
11) If initiated successfully you can now fetch I/Q data and timestamps with bbGetIQ. The

timestamp returned will be the time of the first sample in the array of data collected.

Code Example
See the examples folder in the API download for an example of timestamping the I/Q data using a GPS
receiver.

Bandwidth Tables
For Nuttall RBW shapes, this table shows the possible RBWs and their corresponding FFT sizes. RBWs
that are between these values use zero-padding to achieve the selected RBW.

Native Bandwidths (Hz) FFT size

10.10e6 16

5.050e6 32

 2.525e6 64

1.262e6 128

631.2e3 Largest Real-Time RBW 256

315.6e3 512

157.1e3 1024

78.90e3 2048

39.45e3 4096

19.72e3 8192

9.863e3 16384

4.931e3 32768

2.465e3 Smallest Real-Time RBW 65536

1.232e3 131072

616.45 262144

308.22 524288

154.11 1048576

154.11 1048576

77.05 2097152

38.52 4194304

19.26 8388608

9.63 16777549

4.81 33554432

2.40 67108864

Signal Hound | Appendix 41

Flat-top RBWs and FFT size

It is possible to determine the FFT length used by the API when utilizing flat-top RBWs. The function
below returns the FFT length for an arbitrary RBW. A custom flat-top window with variable bandwidth is
built to modify the signal bandwidth beyond just FFT length.

1. int fft_size_from_flattop_rbw(double rbw)
2. {
3. double min_bin_sz = rbw / 3.2;
4. double min_fft = 80.0e6 / min_bin_sz;
5. int order = (int)ceil(log2(min_fft));
6.
7. return pow2(order);
8. }

1.204 134217728

0.602 268435456

0.301 536870912

