

VSG60 Application Programming
Interface (API)
Programmers Reference Manual

1

VSG60 Application Programming Interface (API)

Programmers Reference Manual

©2019, Signal Hound
1502 SE Commerce Ave, Suite 101

Battle Ground, WA
Phone 360-313-7997

July 15, 2020

This information is being released into the public domain in accordance with the Export

Administration Regulations 15 CFR 734

2

Table of Contents

Overview ... 4

Contact Information .. 4

Build/Version Notes .. 4

PC Requirements and Setup .. 4

Code Examples .. 4

Theory of Operation .. 4

Opening a Device .. 5

Basic Signal Generation ... 5

Complex Signal Generation (Streaming) ... 5

Closing the Device ... 6

Recalibration .. 6

I/Q Data and Output Power .. 6

Thread Safety.. 7

Multiple Devices and Multiple Processes ... 7

Status Codes and Error Handling... 7

Functions .. 7

Common Error Codes ... 8

vsgGetAPIVersion .. 8

vsgGetDeviceList ... 8

vsgOpenDevice ... 9

vsgOpenDeviceBySerial .. 9

vsgCloseDevice ... 9

vsgPreset ..10

vsgRecal ...10

vsgAbort ...10

vsgGetSerialNumber ...10

vsgGetFirmwareVersion ..11

3

vsgGetCalDate ...11

vsgReadTemperature ..11

vsgSetRFOutputState ...12

vsgSetTimebase ...12

vsgSetTimebaseOffset ..12

vsgSetFrequency ..13

vsgSetSampleRate ...13

vsgSetLevel ...14

vsgSetAtten ...14

vsgGetIQScale ...14

vsgSetIQOffset ..15

vsgSetDigitalTuning ..15

vsgSetTriggerLength ...15

vsgSubmitIQ ...16

vsgSubmitTrigger ...16

vsgFlushAndWait ..16

vsgOutputWaveform ...17

vsgRepeatWaveform ...17

vsgOutputCW ..17

vsgEnablePowerSavingCpuMode ...18

vsgGetErrorString ..18

Appendix ... 18

Linux Notes ...18

Other Programming Languages ..19

Power Saving CPU Mode ..19

4

Overview
This manual is a reference for the Signal Hound SM200 spectrum analyzer programming interface

(API). The API provides a low-level set of C routines for interfacing the SM200. The API is C ABI

compatible making is possible to be interfaced from most programming languages. See the code

examples folder to for examples of using the API in C++ and other various environments.

Contact Information
For all programming and technical questions, please email aj@signalhound.com.

For sales, email sales@signalhound.com.

Build/Version Notes
Versions are of the form major.minor.revision.

A major change signifies a significant change in functionality relating to one or more measurements,

or the addition of significant functionality. Function prototypes have likely changed.

A minor change signifies additions that may improve existing functionality or fix major bugs but

makes no changes that might affect existing user’s measurements. Function prototypes can change

but do not change existing parameters meanings.

A revision change signifies minor changes or bug fixes. Function prototypes will not change. Users

should be able to update by simply replacing DLL.

Version 1.0.0 – Official release

PC Requirements and Setup
Windows Development Requirements

• Windows 7/8/10, (7/10 recommended)

• Linux 64-bit (Ubuntu 18.04 recommended)

• (C/C++ only) Windows C/C++ development tools and environment. Preferably Visual Studio

2008 or later. If Visual Studio 2012 is not used, then the VS2012 redistributables will need to

be installed.

• Library files vsg_api.h, vsg_api.lib, and vsg_api.dll.

PC and Other Requirements

• VSG60

• USB 3.0 connectivity provided through 4th generator or later Intel CPUs. 4th generation Intel

CPU systems might require updating USB 3.0 drivers to operate properly.

• (Recommended) Quad core Intel i5 or i7 processor, 4th generation or later.

• (Minimum) Dual core Intel i5 or i7 processor, 4rd generation or later.

Code Examples
All code examples are provided in the Signal Hound SDK.

https://signalhound.com/software/signal-hound-software-development-kit-sdk/

Theory of Operation
There are two primary ways to generate waveforms with the VSG60 API.

mailto:aj@signalhound.com
mailto:sales@signalhound.com
https://signalhound.com/software/signal-hound-software-development-kit-sdk/

5

1) (basic) Provide a complete waveform which the API will output once or repeat until stopped.

This is the simplest method for generation. These methods are ideal for fixed frequency output

waveforms up to many seconds in length.

2) (complex) Use the streaming functions which allow for long waveforms or complex sequences

which might involve frequency hopping and level changes.

Opening a Device
Before any generation can occur, the device must be opened and initialized. Opening and initializing a

device through the API is performed through the vsgOpenDevice or vsgOpenDeviceBySerial

functions. These functions will perform the full initialization of the device and if successful, will return

an integer handle which can be used to reference the device for the remainder of your program. See

the list of all SM200 devices connected to the PC via the vsgGetDeviceList function.

Basic Signal Generation
Basic signal generation involves configuring the generator and then using one of the following

functions

- vsgOutputWaveform

- vsgRepeatWaveform

- vsgOutputCW (convenience function)

Waveforms are provided as interleaved I/Q complex pairs. The API can output the waveform once

using the vsgOutputWaveform function, or continually generate the waveform using the

vsgRepeatWaveform function.

The vsgOutputWaveform is a blocking function which returns once fully output. When a waveform is

on repeat, any changes in configuration will cause the waveform to be paused, and then restarted

once reconfiguration has completed.

Submitting a trigger or I/Q data through the vsgSubmitIQ function will stop any waveforms on

repeat.

Calling vsgAbort will end any active waveforms on repeat.

Complex Signal Generation (Streaming)
For long waveform generation or for transmitting a complex sequence of events such as frequency

hopping or triggers, a collection of functions are available in the API which allow a user to buffer a

sequence of configuration and transmit events. The following functions can be buffered/queued

- vsgSetFrequency

- vsgSetLevel

- vsgSubmitIQ

- vsgSubmitTrigger

- vsgFlushAndWait

Roughtly 1/5th of a second of I/Q data can be buffered. If the buffer is full and vsgSubmitIQ data is

called, the function blocks until space is available in the buffer.

Calling vsgAbort will cause all I/Q data in the buffer to be dumped and any pending frequency/level

changes to be completed in the order received.

6

Closing the Device
When finished, you can close the device and free all resources related to the device with the

vsgCloseDevice function. Once closed, the device will appear in the open device list again. It is

possible to open and close a device multiple times during the execution of a program.

Recalibration
Recalibration is performed by calling the vsgRecal function which retrieves the current device

temperature and recalibrates the device for the current device settings. This will interrupt any signal

generation currently in progress.

Large temperature changes affect signal generation in the form of reduce amplitude accuracy and

reduced spurious performance, and it is recommended to reconfigure the device after large

environmental changes and during device warmup.

Recalibration can occur automatically during periods of activity that include frequency changes, but

when generating the same signal for long periods of time, or after a long period of inactivity, a

recalibration is recommended.

I/Q Data and Output Power
Waveforms are provided to the API as I/Q data. I/Q data should be provided as contiguous interleaved

real, imaginary pairs.

Example: [re1, im1, re2, im2, …, reN, imN] would be an array of N I/Q samples, which would equal 2*N

contiguous floating-point values.

Each {re, im} pair represents a single sample. Each real and imaginary sample should be a 32-bit

floating point value. A magnitude of 1.0 will equal the output power set by the user.

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝐼/𝑄 𝑠𝑎𝑚𝑝𝑙𝑒 = √𝑟𝑒𝑎𝑙 2 + 𝑖𝑚𝑎𝑔2

7

To measure the output power of a sample in dBm, use the formula

𝑃𝑜𝑤𝑒𝑟 𝑜𝑓 𝐼𝑄 𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑂𝑢𝑡𝑝𝑢𝑡 𝑃𝑜𝑤𝑒𝑟 (𝑣𝑠𝑔𝑆𝑒𝑡𝐿𝑒𝑣𝑒𝑙) + 20 ∗ 𝑙𝑜𝑔10(𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝐼𝑄 𝑠𝑎𝑚𝑝𝑙𝑒)

Internally I/Q samples are scaled to achieve the user selected output power. The default scaling is 0.5

and increases/decreases around this value to digitally scale where the internal amplifier and

attenuator cannot. The internal scale can be queried through the API. Because we use a base scale of

0.5, this means magnitudes greater than 1.0 can be tolerated. Clipping occurs when either I or Q

value exceeds 1.0 post scaling. The scaling is performed as such.

𝑆𝑐𝑎𝑙𝑒𝑑 𝐼𝑄 = {𝑟𝑒𝑎𝑙 ∗ 𝑠𝑐𝑎𝑙𝑒𝐹𝑎𝑐𝑡𝑜𝑟, 𝑖𝑚𝑎𝑔 ∗ 𝑠𝑐𝑎𝑙𝑒𝐹𝑎𝑐𝑡𝑜𝑟}

If you have a waveform with amplitudes much greater than 1.0, it is recommended to query the scale

to verify clipping won’t occur or scale the entire waveform and adjust the output power to

compensate.

Thread Safety
The VSG60 API is not thread safe. A multi-threaded application is free to call the API from any number

of threads if the function calls are synchronized (i.e. using a mutex). Not synchronizing your function

calls will lead to undefined behavior. Ideally, a device should be interfaced from a single thread.

Multiple Devices and Multiple Processes
The API can manage multiple devices within one process. In each process the API manages a list of

open devices to prevent a process from opening a device more than once. You may open multiple

devices by specifying the serial number of the device directly or allowing the API to discover them

automatically.

If you wish to use the API in multiple processes, it is the user’s responsibility to manage a list of

devices to prevent the possibility of opening a device twice from two different processes. Two

processes communicating to the same device will result in undefined behavior. One possible way to

manage inter-process information is to use a named mutex on a Windows system.

If you wish to interface multiple devices on Linux, see the Appendix: Linux Notes.

Status Codes and Error Handling
All functions return a VsgStatus error code. VsgStatus is an enumerated type representing the

success of a given function call. The integer values associated with each status provides information

about whether a function call succeeded or failed.

An integer value of zero indicates no error or warnings. Negative integer status values indicate errors

and positive values represent warnings.

A descriptive string of each status type can be retrieved using the vsgGetErrorString function.

Functions
All functions other that initialization functions take a device handle as the first parameters. This

integer is obtained after opening the device through either the vsgOpenDevice or

vsgOpenDeviceBySerial function. This handle uniquely identifies the receiver for the duration of the

application execution, or until vsgCloseDevice is called.

Each function returns an error code which can provide warnings or errors related to the execution of

the function. There are many cases where you will need to monitor these codes to determine the

success or failure of an operation. See a list of common error codes and their descriptions in the

Appendix.

8

Common Error Codes
This sections documents some of the more common error codes and their meaning. For a full list of

status codes, see the API header file and the API function list in this document.

Negative error codes represent errors and are suffixed with ‘Err’. When an error code is returned, the

operation requested did not complete. Positive error codes are warnings and indicate that the

function/operation completed successfully, but the user might need to take some action.

vsgNoError Returned when a function returns successfully.

vsgInvalidDeviceErr Returned when the device handle provided does not match an open

device.

vsgSettingClamped Returned when one or more parameters was clamped to a valid range.

vsgInvalidParameterErr Returned when one or more parameters is not valid. For instance, if an

enum parameter does not match the set of possible values, this error
code is returned.

vsgNullPtrErr Returned when one ore more pointer parameters are NULL.

vsgGetAPIVersion
const char* vsgGetAPIVersion();

Return Values

const char* The returned string is of the form

 major.minor.revision

 Ascii periods (‘.’) separate positive integers. Major/minor/revision are
not guaranteed to be a single decimal digit. The string is null
terminated. The string should not be modified or freed by the user. An
example string is below…

 [‘3’ | ‘.’ | ‘0’ | ‘.’ | ‘1’ | ‘1’ | ‘\0’] = “3.0.11”

vsgGetDeviceList
VsgStatus vsgGetDeviceList(int *serials, int *deviceCount);

Parameters

serials Pointer to an array of integers.

deviceCount Pointer to an int. The initial value should be the size of the serials

array. If the function returns successfully, deviceCount will be set to

the number devices found on the system and returned in the serials

array. deviceCount will not exceed the initial size passed to the

function.

Description

This function is used to retrieve the serial number of all unopened VSG60 devices connected to the PC.

The serial numbers returned can then be used to open specific devices with the

vsgOpenDeviceBySerial function.

When the function returns successfully, the serials array will contain deviceCount number of

unique VSG60 serial numbers.

9

vsgOpenDevice
VsgStatus vsgOpenDevice(int *handle);

Parameters

handle Pointer to integer to be used as a handle for the device.

Description

Claim the first unopened VSG60 detected on the system. If the device is opened successfully, a handle

to the function will be returned through the device pointer. This handle can then be used to refer to

this device for all future API calls.

This function has the same effect as calling vsgGetDeviceList and using the first device found to

call vsgOpenDeviceBySerial.

Return Values

vsgDeviceNotFoundErr Unable to find/open a VSG60 receiver.

vsgOpenDeviceBySerial
VsgStatus vsgOpenDeviceBySerial(int *handle, int serialNumber);

Parameters

handle Pointer to integer to be used as a handle for the device.

serialNumber Serial number of the device you wish to open.

Description

This function operates like vsgOpenDevice except it allows you to specify the device you wish to

open. This function is often used in conjunction with vsgGetDeviceList when managing several

VSG60 devices on one PC.

Return Values

See return values for vsgOpenDevice.

vsgCloseDevice
VsgStatus vsgCloseDevice(int handle);

Parameters

Description

This function should be called when you are finished with the VSG60. It will release all resources for

the device and the device will become available again for use in the current process. The device

handle specified will no longer point to a valid device and the device must be re-opened again to be

used. This function should be called before the process exits.

Return Values

10

vsgPreset
VsgStatus vsgPreset(int handle);

Parameters

Description

Performs a full device preset. When this function returns, the hardware will have performed a full

reset, the device handle will no longer be valid, the vsgCloseDevice function will have been called

for the device handle, and the device will need to be re-opened again.

This function can be used to recover from an undesirable device state.

This function takes about 3 seconds to complete and return.

Return Values

vsgRecal
VsgStatus vsgRecal(int handle);

Parameters

Description

When operating the VSG60 for long periods of time with a fixed configuration, environmental changes

leading to changes in the internal operating temperature of the VSG can cause signal drift leading to

loss of amplitude accuracy and image rejection performance. This function aborts any current

operation, and updates internal temperature corrections for the current configuration.

Return Values

vsgAbort
VsgStatus vsgAbort(int handle);

Parameters

Description

This function returns the device to an idle state.

If currently playing a waveform through the vsgRepeatWaveform function, the generation is

stopped.

If the device is streaming in the complex generation mode, all I/Q data pending is discarded and all

frequency/level changes are finished before returning.

When this function returns, the device will be in an idle state.

Return Values

vsgGetSerialNumber
VsgStatus vsgGetSerialNumber(int handle, int *serialNumber);

11

Parameters

serialNumber Pointer to integer. If this function returns successfully, the integer

pointed to will contain the specified devices serial number.

Description

This function returns the serial number of an open VSG60 device.

Return Values

vsgGetFirmwareVersion
VsgStatus vsgGetFirmwareVersion(int handle, int *version)

Parameters

version Pointer to 32-bit int.

Description

Get the firmware version of an open device.

Return Values

vsgGetCalDate
VsgStatus vsgGetCalDate(int handle, uint32_t *lastCalDate);

Parameters

lastCalDate Pointer to unsigned integer.

Description

This function returns the calibration date as the seconds since epoch.

Return Values

vsgReadTemperature
VsgStatus vsgReadTemperature(int handle, float *temp);

Parameters

temp Pointer to float, to contain current device internal temperature in

Celsius.

Description

If the device is not idle, the last read temperature is returned, otherwise the device temperature is

read before returning.

Return Values

12

vsgSetRFOutputState
VsgStatus vsgSetRFOutputState(int handle, VsgBool enabled);

VsgStatus vsgGetRFOutputState(int handle, VsgBool *enabled);

Parameters

enabled Set to vsgTrue to enable the RF output. Set to vsgFalse to disable

the RF output.

Description

Use this function to disable the RF output of the VSG60. Even when the VSG is not transmitting, it

might still be emitting spurious energy related to clock frequencies and the DC offset. Disabling the RF

output will eliminate most spurious signals.

The RF output is enabled by default.

When the RF output is disabled the only way to enable it again is to call this function. Until then, all

actions will continue to be performed but with the RF output disabled.

The vsgAbort function is called when this function is called. This means any signal actively being

generated will be stopped when this function is called.

Return Values

vsgSetTimebase
VsgStatus vsgSetTimebase(int handle, VsgTimebaseState state);

VsgStatus vsgGetTimebase(int handle, VsgTimebaseState *state);

Parameters

state Timebase state enum.

Description

Specify whether the VSG60 should use its internal 10MHz reference or one provided on the 10MHz

reference BNC.

If external reference is selected and no reference is provided, the frequency error may be off by

several PPM.

If the state provided matches the current state, the function returns immediately.

Any active waveforms are paused, and the stream is flushed before this operation takes place.

Return Values

vsgSetTimebaseOffset
VsgStatus vsgSetTimebaseOffset(int handle, double ppm);

VsgStatus vsgGetTimebaseOffset(int handle, double *ppm);

Parameters

ppm Floating point value between [-2, +2]

13

Description

Adjust the VSG timebase by up to 2ppm. This adjustment will only last until the device is closed via

vsgCloseDevice or the program is terminated.

If the value provided matches the currently set value, this function returns immediately.

Any active waveforms are paused, and the stream is flushed before this operation takes place.

Return Values

vsgSetFrequency
VsgStatus vsgSetFrequency(int handle, double frequency);

VsgStatus vsgGetFrequency(int handle, double *frequency);

Parameters

frequency Set the output frequency in Hz.

Description

Sets the output frequency of the VSG.

This function can be used for complex streaming signal generation. In complex streaming mode, this

operation takes 200us to complete.

This operation will occur even if the provided frequency matches the current frequency.

This operation may configure a recalibration (at no cost).

Return Values

vsgSetSampleRate
VsgStatus vsgSetSampleRate(int handle, double sampleRate);

VsgStatus vsgGetSampleRate(int handle, double *sampleRate);

Parameters

sampleRate Set the VSG sample rate in Hz

Description

Sets the I/Q sample rate of the VSG. The streaming queue is flushed via vsgFlushAndWait before the

sample rate is updated. If the supplied sample rate is the same sample rate, this function returns

immediately.

A full sample rate change takes approximately 200-250ms.

Return Values

vsgInvalidParameterErr If the sample rate provided is outside the acceptable range an error is

returned instead of clamping.

14

vsgSetLevel
VsgStatus vsgSetLevel(int handle, double level);

VsgStatus vsgGetLevel(int handle, double *level);

Parameters

level Desired output level in dBm.

Description

Set the output level of the VSG. Hardware attenuation, amplification, and digital scaling are used to

achieve the requested output level. What values are used depend on the temperature calibration

coefficients for individual device and the frequency of the output.

This function can be used for complex streaming signal generation. In complex streaming mode, this

operation takes 10us to complete.

This operation will occur even if the provided level matches the current level.

This operation may configure a recalibration (at no cost).

Return Values

vsgSetAtten
VsgStatus vsgSetAtten(int handle, int atten);

Parameters

atten Attenuator value between [-50, 20] in 2dB steps. (must be an even
number).

Description

This function allows the customer to guarantee the configuration of the internal attenuator and

amplifier directly by specifying a fixed system attenuation. Values that are positive utilize the amplifier

to achieve the desired setting. A digital I/Q scale of 0.5 is used.

Return Values

vsgGetIQScale
VsgStatus vsgGetIQScale(int handle, double *iqScale);

Parameters

iqScale Floating point value returned between [0.0, 1.0]

Description

Returns the currently used digital scale applied to the I/Q data before transmitting. The digital scaling

is used in conjunction with the hardware amplifier and attenuator to achieve the desired output level.

This function does not interrupt any active waveforms or streaming generation.

Return Values

15

vsgSetIQOffset
VsgStatus vsgSetIQOffset(int handle, int16_t iOffset, int16_t qOffset);

VsgStatus vsgGetIQOffset(int handle, int16_t *iOffset, int16_t *qOffset);

Parameters

iOffset User I offset between [-1024, +1024]

qOffset User Q offset between [-1024, +1024]

Description

Specify an additional I/Q offset applied to the I/Q data before transmit. Used to fine improve carrier

feedthrough. The offset lasts until the device is closed or the program is terminated.

vsgFlushAndWait is called at the beginning of this function.

If the supplied value matches the old value, this function returns immediately.

Return Values

vsgSetDigitalTuning
VsgStatus vsgSetDigitalTuning(int handle, VsgBool enabled);

VsgStatus vsgGetDigitalTuning(int handle, VsgBool *enabled);

Parameters

enabled When set to vsgTrue, digital tuning is enabled.

Description

If the value is provided is, this function returns immediately with no effect.

vsgFlushAndWait is called before the operation occurs.

See the VSG60 product manual for a description of digital tuning.

Return Values

vsgSetTriggerLength
VsgStatus vsgSetTriggerLength(int handle, double seconds);

VsgStatus vsgGetTriggerLength(int handle, double *seconds);

Parameters

seconds Time in seconds.

Description

Length of time the output trigger logic port remains high when a trigger is output in seconds. Default

is 10us. (10.0e-6)

The range of acceptable values is [100ns, 1s]

This function does not interrupt any active waveforms or streaming generation.

16

Return Values

vsgSubmitIQ
VsgStatus vsgSubmitIQ(int handle, float *iq, int len);

Parameters

iq Array of interleaved I/Q values.

len Number of I/Q pairs in iq array.

Description

Submit an array of I/Q samples to be generated with the current configuration. If an ARB waveform is

currently being transmitted via the vsgRepeatWaveform function, it is aborted, and the device starts

operating in the streaming configuration.

This function should only be used for complex/streaming signal generation. For generating simple

waveforms, use the vsgOutputWaveform and vsgRepeatWaveform functions.

This function will block until there is room in the processing and command queue.

See Complex Signal Generation for more information.

Return Values

vsgSubmitTrigger
VsgStatus vsgSubmitTrigger(int handle);

Parameters

Description

Submit a streaming trigger event. If an ARB waveform is currently being transmitted, it is aborted,

and the device starts operating in the streaming configuration. If a trigger is already active when the

new trigger is output, it is first toggled low before re-toggling high, resetting the trigger high period in

the process.

Return Values

vsgFlushAndWait
VsgStatus vsgFlushAndWait(int handle);

Parameters

Description

Pushes all pending operations in a complex stream out to the device and blocks until they have been

completed.

This function should be called after a sequence of streaming events to ensure continuous operation of

the streaming events (no gaps).

When this function returns, the device will be idle.

17

Return Values

vsgOutputWaveform
VsgStatus vsgOutputWaveform(int handle, float *iq, int len);

Parameters

iq Array of interleaved I/Q values.

len Number of I/Q pairs in iq array.

Description

Output the I/Q waveform once and return. This function has the same effect as calling vsgSubmitIQ

followed by vsgFlushAndWait. This function returns once the waveform has been transmitted. The

device will be in an idle state when returned. If an ARB waveform is active, it is aborted before

transmission.

Return Values

vsgRepeatWaveform
VsgStatus vsgRepeatWaveform(int handle, float *iq, int len);

Parameters

iq Array of interleaved I/Q values.

len Number of I/Q pairs in iq array.

Description

This function instructs the API to continually generate the provided waveform. A full copy of the

waveform is made before generation occurs. This function blocks until signal generation has begun.

The repeated waveform is only stopped after calling the vsgAbort function or by submitting I/Q data

or a trigger. Setting any other configuration value, such as frequency, level, etc. will only pause the

waveform until the configuration completes and then generation starts again.

Return Values

vsgOutputCW
VsgStatus vsgOutputCW(int handle);

Parameters

Description

Convenience function which outputs a CW signal with the current frequency, level, and sample rate.

This function has the same effect as calling vsgRepeatWaveform with a single I/Q value of {1,0}.

Return Values

18

vsgEnablePowerSavingCpuMode
void vsgEnablePowerSavingCpuMode(VsgBool enabled);

Description

See Power Saving CPU Mode.

vsgGetErrorString
const char* vsgGetErrorString(VsgStatus status);

Parameters

status A valid VsgStatus enumeration.

Description

Retrieve a descriptive string of a VsgStatus enumeration. Useful for debugging and diagnostic

purposes.

Return Values

const char* A pointer to a null terminated string. The memory should not be

freed/deallocated/modified.

Appendix
Linux Notes
Throughput

By default, Linux applications cannot increase the priority of individual threads unless ran with

elevated privilege (root). On Windows this issue does not exist, and the API will elevate the USB data

acquisition threads to a higher priority to ensure USB data loss does not occur. On Linux, the user will

need to run their application as root to ensure USB data acquisition is performed at a higher priority.

If this is not done, there is a higher risk of USB data loss.

In our testing, if little additional processing is occurring outside the API, 1 or 2 devices typically will

not experience data loss due to this issue. Once the user application increases the processing load or

starts performing I/O such as storing data to disk, the occurrence of USB data loss increases and the

need to run the application as root increases.

Multiple Devices

There are limitations that apply when attempting to use multiple devices on Linux. The maximum

amount of memory that can be allocated for USB transfers on Linux is 16MB. A single VSG60A can

stay within this limitation, but two devices will exceed this limitation and can cause the API to crash

when you do. The USB allocation limit can be changed by writing to the file

 /sys/module/usbcore/parameters/usbfs_memory_mb

A good value would be N * 16 where N is the number of devices you plan on interfacing.

One way to write to this file is with the command

sudo sh -c ‘echo 32 > /sys/module/usbcore/parameters/usbfs_memory_mb’

19

where 32 can be replaced with any value you wish.

Other Programming Languages
The VSG60 interface is C compatible which ensures it is possible to interface the API in most

languages that can call C functions. These languages include C++, C#, Python, MATLAB, LabVIEW,

Java, etc. Some examples of calling the VSG60 API in these other languages are included in the code

examples folder.

The VSG60 API consists of several enumerated(enum) types, which are often used as parameters.

These values can be treated as 32-bit integers when callings the API functions from other

programming languages. You will need to match the enumerated values defined in the API header file.

Power Saving CPU Mode
Newer CPU models implement efficient power saving techniques that can interfere with and reduce

USB bandwidth. If you are using one of these CPU models, you can experience issues with the VSG60

which might appear as data loss when inspecting the output of the VSG60. We are offering 2 potential

solutions to this problem.

1) Enable the power saving CPU mode through the API. This has the effect of adding an artificial load

to the API to keep the CPU from entering any low power CPU states that might affect the USB

throughput. You will see an increase in CPU usage through this method.

2) Disable “C-States” in the BIOS of the PC. This prevents the OS from being able to put the CPU in

these low power states which affect USB performance. This will increase power consumption of the PC

which will affect battery life but will see lower CPU usage (since power saving CPU mode can be

disabled).

The default state of this mode is disabled in the API.

PCs most affect are laptops and ultraportable devices running Windows 10.

