

VSG60 SCPI Programming Manual

User Guide

VSG60 SCPI Programming Manual

Published 10/23/2020

©2020, Signal Hound

1502 SE Commerce Ave, Suite 101

Battle Ground, WA

Phone 360-313-7997

Contents
1 Version Notes ... 3

2 Introduction / About SCPI ... 4

3 SCPI command basics ... 4

4 Getting Started ... 7

5 Functionality provided through SCPI .. 8

6 Examples .. 8

7 Functions .. 8

1 Version Notes

SCPI commands can and will change as the VSG60 software evolves. It is recommended that

when you update the VSG60 software in an installation that is controlled via SCPI, to review the

version notes and determine if any functionality needs to be updated. See the separate document

title scpi_version_notes.txt for a full list of changes for each version of the VSG60 software.

2 Introduction / About SCPI

SCPI (Standard Commands for Programmable Instruments) is a standard which covers the set

of commands used to program various instruments. The standard covers the syntax, form,

behavior, etc. of these commands in attempt to reduce development time for the user.

For the purposes of Signal Hound and the VSG60 software, a user can send SCPI commands to

control the VSG60 software in an automatic fashion. SCPI commands are sent to instruments

over many interfaces, commonly GPIB, VXI, USB, Ethernet, etc. The VSG60 software accepts

commands over a network socket. The VSG60 software will accept a single network connection

in which it can receive SCPI commands and send responses.

This document will cover the basics of SCPI commands, how to get started programming the

VSG60 software, and will cover the full SCPI command set implemented by the VSG60 software.

3 SCPI command basics

This section contains a quick overview of the SCPI command syntax and usage to the extent that

is relevant to the VSG60 software. The VSG60 does not utilize all functionality in the SCPI

standard and as such said functionality will not be covered here.

3.1 Commands

A SCPI command is comprised of a series of keywords separated by colons. A command may be

followed by a ‘?’ to represent a query, a series of parameters separated by spaces, or both.

:SENSE:FREQUENCY:CENTER 1GHz (Example command for setting the center frequency to

1GHz)

:sense:frequency:center? (Example command for querying the current center frequency)

Commands are case insensitive. Each keyword in a command can have a short and long form.

Both can be used interchangeably.

:SENSe:FREQuency:CENTer is a command with three keywords. Each keyword has a short

and long form. The short form is denoted by the uppercase characters and the long form is the

full keyword including the upper and lower-case characters. For example, FREQ is the short form

of FREQUENCY. When constructing a command, the short and long form can be interchanged.

For example, you could construct the command as such, :SENS:FREQUENCY:CENT where

SENSE and CENTER are sent as short form and FREQUENCY as longform.

Some commands are options and are denoted as such by the ‘[]’ characters.

[:SENSe]:FREQuency:CENTer is a command where the first keyword is optional. This

command can be sent as FREQ:CENT and still be interpreted correctly.

Commands are terminated with a newline character. For example

:SENS:FREQ:CENT 1GHZ\n

Commands will be processed once a newline is reached. Additionally, a newline will reset the

current keyword path.

3.2 Multiple commands

Multiple commands can be sent to the device at once using the semi colon character separating

each command.

:SENS:FREQ:CENT 1GHz; :SENS:FREQ:SPAN 10MHz\n

This is an example of sending two commands at once. Additionally, when sending multiple

commands, you don’t need to repeat all keywords leading up to the final keyword for commands

after the first.

:SENS:FREQ:CENT 1GHz; SPAN 10MHz\n

Here SPAN retains the :SENS:FREQ: keywords from the previous command. To prevent this from

happening use the colon character leading the second command. For example

:SENS:FREQ:CENT 1GHz; :SPAN 10MHz\n

This is an invalid series of commands, since span is prefixed with a colon command which reset

the previous keywords.

3.3 Parameters

There are several types of parameters that can be sent in commands.

Boolean ON | OFF | 0 | 1

Keyword

<bool>

Character specific strings for a given command. These keywords can also

have short and long form.

Numeric

<integer>

<double>

Numeric parameters take either the form of integer or decimal values.

Examples include

1

1.23

9

3.14

Frequency

<freq>

These are numeric parameters with a frequency suffix. Possible frequency

suffixes include

HZ | KHZ | MHZ | GHZ

The suffixes are case insensitive. If a suffix is not present, Hz is the default

unit. Examples include

1kHz

20MHz

12GHz

Any function that returns a frequency will return the frequency in Hz with no

suffix present.

Amplitude

<amplitude>

These are numeric parameters with an amplitude suffix. Possible amplitude

suffixes include

DBM | DBMV | DBUV | MV

The suffixes are case insensitive. A suffix must be present unless indicated

otherwise. Examples include

-20DBM

60dbuv

If a function returns an amplitude, it will return the amplitude in the current

software units without a suffix.

3.4 Return Values

Values returned from the VSG60 software (as a result of sending a query command) are

separated by a semi-colon if multiple query commands are sent in one string and are terminated

by a newline. For example, sending

“CALC:MARK:MAX; X?; Y?\n”

results in a return string of

“1000000;-20\n”

The command sent performs a peak search and queries the X and Y positions of the marker. The

return is the X and Y positions separated by a semicolon and terminated with a newline.

3.5 Special Characters

This section describes the numerous special characters that are present in the commands in this

document.

Character Description Example

| Vertical stroke between parameters indicates

multiple choices

FLATtop | GAUSsian

The choices are between FLATTOP or

GAUSSIAN. Provide one or the other.

[] Square brackets indicate an optional keyword :SYSTem:ERRor[:NEXT]?

Next is an optional keyword and the

command could also be composed as

:SYSTem:ERRor?

<> Angle brackets around a parameter indicate a

type and angle brackets should not be

included in the user command.

*RCL <int>

<int> is the type of parameter and an

example of using this command would

be

*RCL 1

Notice the angle brackets are not

included.

4 Getting Started

See the SCPI examples found in the SDK download on any of the Signal Hound product download

pages. The examples use the C programming language and a common VISA library

implementation.

Instrument control is performed by connecting to the VSG60 software on TCP/IP port 5024. On

this port, a user can send and receive raw SCPI commands. It is not necessary to use a I/O library

like VISA to communicate with the VSG60 software but it can simplify several operations. It is

possible to communicate directly over the socket with socket programming. The computer that is

communicating with the VSG60 software does not have to be the same computer running the

VSG60 software and does not have to be a Windows platform.

It is recommended to use a VISA library if available. Several implementations of VISA exist.

Commonly used ones include Keysight’s I/O libraries, and NI’s VISA libraries. You can also use

VISA implementations that exist in other languages/environments such as MATLAB, LabVIEW,

and Python.

Connecting to the socket interface using VISA looks like this

viOpen(rm, “TCPIP::localhost::5025:SOCKET”, VI_NULL, VI_NULL, &inst);

Additionally, when using a VISA library, it is necessary to set the VI_ATTR_TERMCHAR_EN

attribute to true. This will terminate the read operation when the termination character is received.

The termination character should be set to the newline (‘\n’) character if it is not set by default.

The code for this is below.

viSetAttribute(inst, VI_ATTR_TERMCHAR_EN, VI_TRUE);

viSetAttribute(inst, VI_ATTR_TERMCHAR, '\n');

Only one connection to the VSG60 software can be active at a time. The connection can be

terminated by either closing the socket connection, either through the socket library you are using,

the viClose function if you are using a VISA library, or by closing your application. The VSG60 will

immediately begin waiting for another socket connection when the previous one is ended.

5 Functionality provided through SCPI

The table below details what functionality is covered under the current SCPI command set.

Functionality will be added over time. If functionality you need it not available, please contact us

at aj@signalhound.com to make requests.

Functionality Implemented

Amplitude Modulation Yes

Frequency Modulation Yes

Multitone Yes

Step Sweep Yes

Ramp Sweep Yes

AWGN Yes

Digital Mod Yes

Bluetooth LE No

IEEE 802.11 a/n/ac No

Arb Yes

Streaming No

6 Examples

All SCPI examples are provided in the API SDK download which can be downloaded on any of

the device download pages on the Signal Hound website.

7 Functions

7.1 Common Commands

The software supports the following common commands.

Command *IDN?

mailto:aj@signalhound.com

*RCL <int>

*SAV <int>

*RST

*TRG

*OPC

*ESR?

Description *IDN?, Query the serial number and name of the device.

*RCL, Load preset [1-9].

*SAV, Save preset [1-9].

*RST, Same as PRESet, see below.

*TRG, Triggers the device.

*OPC, Tells the instrument that after all the commands are executed and finished to

set the ESR bit 0 (OPC bit) to 1. This command in combination with the *ESR?

command can be used for synchronization through polling. See the C++ SCPI

examples in the SDK for an example of polling using these commands.

*ESR?, Returns the Event Status Register (ESR). Only bit 0 is used at this time. Bit

0 represents Operation Complete (OPC). Returns 0 if *OPC has been seen but there

are still commands to be executed and finished. Sends a 1 when all commands have

been finished and executed. This command in combination with the *ESR?

command can be used for synchronization through polling. See the C++ SCPI

examples in the SDK for an example of polling using these commands.

Examples *IDN?

*RCL 1

*SAV 1

*TRG

*RST

*OPC

*ESR?

Software

Controls

Status Bar

File Menu -> Presets -> Load

File Menu -> Presets -> Save

Preset Key

Trigger Key

Couplings None

Preset N/A

Notes

7.2 System Functions

The following commands are used to perform system level software actions and query information

about the system.

Command :SYSTem:COMMunicate:GTLocal

:SYSTem:CLOSe

:SYSTem:PRESet

:SYSTem:PRESet?

:SYSTem:VERsion?

Description COMMunicate:GTLocal, Puts the software in local mode.

CLOSe, Disconnect any active device and closes the software. There is not a way to

reopen the software using SCPI commands. This will also terminate the socket

connection.

PRESet, Presets the active device. This will power cycled the active device and

return the software to the initial power on state. This process can take between 6-20

seconds depending on the device type.

PRESet?, Presets the active device. This will close and reopen the active device.

This process can take between 6-20 seconds depending on the device type. Returns

0 or 1 depending on success. (1 for success)

VERsion?, Returns the software version number.

Examples SYST:CLOS

SYST:PRESET?

SYSTEM:VERSION?

SYST:COMM:GTL

Software

Controls

Status Bar

File Menu -> File -> Exit

Preset

File Menu -> Help -> About Spike

Remote Mode Dialog -> Return to Local

Couplings None

Preset N/A

Notes

7.2.1 Device Management

The functions below allow you to remotely manage the active device in the software. This is useful

for error recovery in the event a device disconnect occurs due, or if one is managing multiple

Signal Hound devices on one PC.

Connecting Signal Hound devices can take between 3-20 seconds depending on the type of

device and the state of the device prior to interfacing it. If the VISA timeout is shorter than the

time it takes to connect the device in the software, you will need to loop on timeout until you

receive the connect status return.

Command :SYSTem:DEVice:ACTive?

:SYSTem:DEVice:COUNt?

:SYSTem:DEVice:LIST?

:SYSTem:DEVice:CONnect? <int>

:SYSTem:DEVice:DISConnect?

Description ACTive?, Returns whether or not a device is currently connected and active in the

software. Look at the *IDN? function to request information about the device.

COUNt?, Returns the number of devices connected to the PC. No device may be

active when this function is called. IE, you must call DISConnect? before calling

this function.

LIST?, Returns all serial numbers available. The serial numbers are returned as

ascii integers and are comma separated. To determine how many serial numbers

are present, use the COUNt? function.

CONnect?, Connect a device. You need to provide the serial number of the device

to connect. Returns 0 or 1 depending on if the device successfully opened.

DISConnect?, Disconnects the active device. Returns 1 when finished.

Examples SYST:DEV:ACT?

SYST:DEV:COUNT?

SYSTEM:DEVICE:LIST?

SYSTEM:DEVICE:CONNECT? 30700189

SYSTEM:DEV:CONNECT?

SYST:DEV:DISC?

Software

Controls

File Menu -> File -> Connect

File Menu -> File -> Disconnect

Couplings Only one device can be active at a time.

Preset N/A

Notes

7.2.2 Errors

The VSG60 software maintains a list of system errors available to the user. Errors are stored with

a unique ID, name, and description. The types of issues represented in the error list are settings

conflicts, SCPI issues such as invalid parameter types or instructions, file I/O errors, etc.

It is recommended to frequently check for errors when utilizing SCPI in the software. Check the

SCPI examples to see how to quickly poll for any present errors.

The errors are returned in the form

“ID,description;error information”

ID is a unique integer for the error. The description is an ascii text description for the error, and

error information is any additional context information for the error generated. An example error

message is below.

“-2,Invalid Parameter;Expected frequency parameter”

This error indicates the SCPI parser was expecting a frequency parameter and was either unable

to find it or was unable to parse it as a frequency.

Once the error queue is empty, the software will return the ‘no error’ error when the next system

error is requested. ‘No error’ has an ID of 0.

Command :SYSTem:ERRor:COUNt?

:SYSTem:ERRor[:NEXT]?

:SYSTem:ERRor:CLEAr

Description COUNt?, Returns the number of errors in the error queue.

NEXT?, Returns the next error in the queue, and removing it from the queue.

CLEAR, Remove all errors from the queue, returns nothing.

Examples SYST:ERR:COUN?

SYSTEM:ERROR:NEXT?

SYST:ERR?

SYST:ERR:CLEAR

Software

Controls

Utilities -> Show Error Log

Error Info -> Clear Button

Couplings None

Preset N/A

Notes None

7.3 Reference

These commands control the reference oscillator settings the of the spectrum analyzer.

Command [:SENSe]:ROSCillator:SOURce INTernal|EXTernal

[:SENSe]:ROSCillator:SOURce?

Description Specify whether the generator should use the internal reference or use an external

reference.

Examples :SENSE:ROSCILLATOR:SOURCE INTERNAL

ROSC:SOUR EXT

rosc:source?

Software

Controls

Ext Ref

Couplings None

Preset On program startup, internal reference is selected.

Notes None

7.4 Output

Command :OUTPut[:STATe] ON|OFF|0|1

:OUTPut[:STATe]?

:OUTPut:MODulation[:STATe] ON|OFF|0|1

:OUTPut:MODulation[:STATe]?

Description

Examples :OUTPUT 1

:OUTPUT:MOD ON

Software

Controls

RF On/Off

Mod On/Off

Couplings None

Preset On program startup, both RF and Mod off

Notes None

7.5 Frequency

Command [:SOURce]:FREQuency <freq>

[:SOURce]:FREQuency?

[:SOURce]:FREQuency:STEP[:INCRement] <freq>

[:SOURce]:FREQuency:STEP[:INCRement]?

Description

Examples FREQ 2.45GHz

FREQ?

FREQ:STEP 20MHz

FREQ:STEP?

Software

Controls

Freq

Step

Couplings None

Preset

Notes None

7.6 Power

Command [:SOURce]:POWer <double>

[:SOURce]:POWer?

[:SOURce]:POWer:STEP[:INCRement] <double>

[:SOURce]:POWer:STEP[:INCRement]?

Description

Examples POW -20

POW?

POW:STEP 1

POW:STEP?

Software

Controls

Level (dBm)

Step (dB)

Couplings None

Preset

Notes None

7.7 Impairments

Command :OUTPut:IMPairments:FREQuency:OFFSet <freq>

:OUTPut:IMPairments:FREQuency:OFFSet?

:OUTPut:IMPairments:LSPur[:STATe] <bool>

:OUTPut:IMPairments:LSPur[:STATe]?

:OUTPut:IMPairments:IOFFset <int>

:OUTPut:IMPairments:IOFFset?

:OUTPut:IMPairments:QOFFset <int>

:OUTPut:IMPairments:QOFFset?

:OUTPut:IMPairments:SRATe:MULTiplier <double>

:OUTPut:IMPairments:SRATe:MULTiplier?

:OUTPut:IMPairments:AWGN[:STATe] <bool>

:OUTPut:IMPairments:AQGN[:STATe]?

:OUTPut:IMPairments:AWGN:SNR <double>

:OUTPut:IMPairments:AWGN:SNR?

:OUTPut:IMPairments:AWGN:IBWidth <freq>

:OUTPut:IMPairments:AWGN:IBWidth?

Description

Examples OUTP:IMP:FREQ:OFFS 1MHz

OUTP:IMP:LSP ON

OUTP:IMP:IOFF 10

OUTP:IMP:QOFF -22

OUTP:IMP:SRAT:MULT 1

OUTP:IMP:AWGN ON

OUTP:IMP:AWGN:SNR 30

OUTP:IMP:AWGN:IBW 10MHz

Software

Controls

Impairment Controls -> Frequency Offset

Impairment Controls -> Low Spur Mode

Impairment Controls -> I Offset

Impairment Controls -> Q Offset

Impairment Controls ->Sample Rate Error (ppm)

Impairment Controls -> AWGN Enabled

Impairment Controls -> AWGN SNR (dB)

Impairment Controls -> AWGN Bandwidth

Couplings None

Preset

Notes None

7.8 Amplitude Modulation

Command [:SOURce]:AM[:STATe] <bool>

[:SOURce]:AM[:STATe]?

[:SOURce]:AM:FREQuency <freq>

[:SOURce]:AM:FREQuency?

[:SOURce]:AM:SHAPe SINE|TRIangle|SQUare|RAMP

[:SOURce]:AM:SHAPe?

[:SOURce]:AM:DEPTh[:LINear] <double>

[:SOURce]:AM:DEPTh[:LINear]?

Description

Examples AM ON

AM:FREQ 10kHz

AM:SHAPE SINE

AM:DEPTH 50

Software

Controls

AM Controls -> Enabled

AM Controls -> Rate

AM Controls -> Depth(%)

AM Controls -> Shape

Couplings None

Preset

Notes None

7.9 Frequency Modulation

Command [:SOURce]:FM[:STATe] <bool>

[:SOURce]:FM[:STATe]?

[:SOURce]:FM:FREQuency <freq>

[:SOURce]:FM:FREQuency?

[:SOURce]:FM:SHAPe SINE|TRIangle|SQUare|RAMP

[:SOURce]:FM:SHAPe?

[:SOURce]:FM:DEViation <double>

[:SOURce]:FM:DEViation?

Description

Examples FM ON

FM:FREQ 20kHz

FM:SHAPE RAMP

FM:DEV 100kHz

Software

Controls

FM Controls -> Enabled

FM Controls -> Rate

FM Controls -> Deviation

FM Controls -> Shape

Couplings None

Preset

Notes None

7.10 Pulse Modulation

Command [:SOURce]:PULM[:STATe] <bool>

[:SOURce]:PULM[:STATe]?

[:SOURce]:PULM:TRIGger:TYPE SINGle|CONTinuous

[:SOURce]:PULM:TRIGger:TYPE?

[:SOURce]:PULM:INTernal:PWIDth <time>

[:SOURce]:PULM:INTernal:PWIDth?

[:SOURce]:PULM:INTernal:PERiod <time>

[:SOURce]:PULM:INTernal:PERiod?

Description

Examples PULM ON

PULM:TRIG:TYPE CONT

PULM:INT:PWID 10us

PULM:INT:PER 1ms

Software

Controls

Pulse Controls -> Enabled

Pulse Controls -> Trigger Mode

Pulse Controls -> Width

Pulse Controls -> Period

Couplings None

Preset

Notes None

7.11 Multitone

Command [:SOURce]:MTONe[:STATe] <bool>

[:SOURce]:MTONe[:STATe]?

[:SOURce]:MTONe:PHASe FIXed|RANDom|PARAbolic

[:SOURce]:MTONe:PHASe?

[:SOURce]:MTONe:PHASe:SEED <int>

[:SOURce]:MTONe:PHASe:SEED?

[:SOURce]:MTONe:NTONes <int>

[:SOURce]:MTONe:NTONes?

[:SOURce]:MTONe:FSPacing <freq>

[:SOURce]:MTONe:FSPacing?

[:SOURce]:MTONe:FNOTch <freq>

[:SOURce]:MTONe:FNOTch?

Description

Examples MTON ON

MTON:PHAS PARA

MTON:PHAS:SEED 1234

MTON:NTON 1001

MTON:FSP 10kHz

MTON:FNOT 1MHz

Software

Controls

Multitone Controls -> Enabled

Multitone Controls -> Tone Phase

Multitone Controls -> Seed

Multitone Controls -> Tone Count

Multitone Controls -> Freq Spacing

Multitone Controls -> Notch Width

Couplings None

Preset

Notes None

7.12 Step Sweep

Command [:SOURce]:STEP[:STATe] <bool>

[:SOURce]:STEP[:STATe]?

[:SOURce]:STEP:TRIGger:TYPE SINGle|CONTinuous

[:SOURce]:STEP:TRIGger:TYPE?

[:SOURce]:STEP:TYPE FREQ|FREQAMPL

[:SOURce]:STEP:TYPE?

[:SOURce]:STEP:FREQuency:STARt <freq>

[:SOURce]:STEP:FREQuency:STARt?

[:SOURce]:STEP:FREQuency:STOP <freq>

[:SOURce]:STEP:FREQuency:STOP?

[:SOURce]:STEP:POINts <int>

[:SOURce]:STEP:POINts?

[:SOURce]:STEP:AMPLitude:STARt <double>

[:SOURce]:STEP:AMPLitude:STARt?

[:SOURce]:STEP:AMPLitude:STOP <double>

[:SOURce]:STEP:AMPLitude:STOP?

[:SOURce]:STEP:DWELl <time>

[:SOURce]:STEP:DWELl?

Description

Examples STEP ON

STEP:TRIG:TYPE SING

STEP:TYPE FREQ

STEP:FREQ:STAR 1GHz

STEP:FREQ:STOP 2GHz

STEP:POIN 1000

STEP:AMPL:START -20

STEP:AMPL:STOP -100

STEP:DWEL 100ms

Software

Controls

Step Sweep Controls -> Enabled

Step Sweep Controls -> Trigger Mode

Step Sweep Controls -> Sweep Type

Step Sweep Controls -> Start Freq

Step Sweep Controls -> Stop Freq

Step Sweep Controls -> Points

Step Sweep Controls -> Start Level

Step Sweep Controls -> Stop Level

Step Sweep Controls -> Dwell Time

Couplings None

Preset

Notes None

7.13 Ramp Sweep

Command [:SOURce]:RAMP[:STATe] <bool>

[:SOURce]:RAMP[:STATe]?

[:SOURce]:RAMP:TRIGger:TYPE SINGle|CONTinuous

[:SOURce]:RAMP:TRIGger:TYPE?

[:SOURce]:RAMP:FREQuency:SPAN <freq>

[:SOURce]:RAMP:FREQuency:SPAN?

[:SOURce]:RAMP:SWEep:TIME <time>

[:SOURce]:RAMP:SWEep:TIME?

[:SOURce]:RAMP:SWEep:PERiod <time>

[:SOURce]:RAMP:SWEep:PERiod?

Description

Examples RAMP ON

RAMP:TRIG:TYPE SING

RAMP:FREQ:SPAN 20MHz

RAMP:SWE:TIME 1ms

RAMP:SWE:PER 1s

Software

Controls

Ramp Sweep Controls -> Enabled

Ramp Sweep Controls -> Trigger Mode

Ramp Sweep Controls -> Span

Ramp Sweep Controls -> Sweep Time

Ramp Sweep Controls -> Period

Couplings None

Preset

Notes None

7.14 AWGN

Command [:SOURce]:RADio:AWGN[:STATe] <bool>

[:SOURce]:RADio:AWGN[:STATe]?

[:SOURce]:RADio:AWGN:BWIDth <freq>

[:SOURce]:RADio:AWGN:BWIDth?

[:SOURce]:RADio:AWGN:LENgth <time>

[:SOURce]:RADio:AWGN:LENgth?

[:SOURce]:RADio:AWGN:SEED <int>

[:SOURce]:RADio:AWGN:SEED?

Description

Examples RAD:AWGN ON

RAD:AWGN:BWID 20M

RAD:AWGN:LEN 100ms

RAD:AWGN:SEED 23

Software

Controls

AWGN Controls -> Enabled

AWGN Controls -> Bandwidth

AWGN Controls -> Length

AWGN Controls -> Seed

Couplings None

Preset

Notes None

7.15 Custom Digital Modulation

Command [:SOURce]:RADio:CUSTom[:STATe] <bool>

[:SOURce]:RADio:CUSTom[:STATe]?

[:SOURce]:RADio:CUSTom:TRIGger:TYPE SINGle|CONTinuous

[:SOURce]:RADio:CUSTom:TRIGger:TYPE?

[:SOURce]:RADio:CUSTom:SRATe <freq>

[:SOURce]:RADio:CUSTom:SRATe?

[:SOURce]:RADio:CUSTom:MODulation[:TYPE]

BPSK|DBPSK|QPSK|DQPSK|OQPSK|P4DQPSK|PSK8|D8PSK|PSK16|QAM16|

QAM64|QAM256|QAM1024|ASK|FSK2|FSK4|FSK8|FSK16|CUSTom

[:SOURce]:RADio:CUSTom:MODulation[:TYPE]?

[:SOURce]:RADio:CUSTom:FILTer

RNYQuist|NYQuist|GAUSsian|RECTangle|CUSTom

[:SOURce]:RADio:CUSTom:FILTer?

[:SOURce]:RADio:CUSTom:FILTer:ALPHa <double>

[:SOURce]:RADio:CUSTom:FILTer:ALPHa?

[:SOURce]:RADio:CUSTom:FILTer:LENgth <int>

[:SOURce]:RADio:CUSTom:FILTer:LENgth?

[:SOURce]:RADio:CUSTom:DATA PN7|PN9|PN15|PN21|CUSTom

[:SOURce]:RADio:CUSTom:DATA?

[:SOURce]:RADio:CUSTom:DATA:SEED <int>

[:SOURce]:RADio:CUSTom:DATA:SEED?

[:SOURce]:RADio:CUSTom:MODulation:FSK[:DEViation] <freq>

[:SOURce]:RADio:CUSTom:MODulation:FSK[:DEViation]?

[:SOURce]:RADio:CUSTom:OVERsample <int>

[:SOURce]:RADio:CUSTom:OVERsample?

Description

Examples RAD:CUST ON

RAD:CUST:TRIG:TYPE SING

RAD:CUST:SRAT 1MHz

RAD:CUST:MOD QAM16

RAD:CUST:FILT RNYQ

RAD:CUST:FILT:ALPH 0.2

RAD:CUST:FILT:LEN 16

RAD:CUST:DATA PN15

RAD:CUST:DATA:SEED 11

RAD:CUST:MOD:FSK:DEV 250kHz

RAD:CUST:OVER 4

Software

Controls

Digital Mod Controls -> Enabled

Digital Mod Controls -> Trigger Mode

Digital Mod Controls -> Symbol Rate

Digital Mod Controls -> Modulation Type

Digital Mod Controls -> Filter Type

Digital Mod Controls -> Filter Alpha

Digital Mod Controls -> Filter Length (symbols)

Digital Mod Controls -> Sequence

Digital Mod Controls -> Sequence Seed

Digital Mod Controls -> FSK Deviation

Digital Mod Controls -> Oversample

Couplings None

Preset

Notes None

7.16 Arb

Command [:SOURce]:RADio:ARB[:STATe] <bool>

[:SOURce]:RADio:ARB[:STATe]?

[:SOURce]:RADio:ARB:TRIGger:TYPE SINGle|CONTinuous

[:SOURce]:RADio:ARB:TRIGger:TYPE?

[:SOURce]:RADio:ARB:SRATe <freq>

[:SOURce]:RADio:ARB:SRATe?

[:SOURce]:RADio:ARB:IQ:SCALe:AUTO[:STATe] <bool>

[:SOURce]:RADio:ARB:IQ:SCALe:AUTO[:STATe]?

[:SOURce]:RADio:ARB:IQ:SCALe <double>

[:SOURce]:RADio:ARB:IQ:SCALe?

[:SOURce]:RADio:ARB:IQ:SCALe:AVERage[:STATe] <bool>

[:SOURce]:RADio:ARB:IQ:SCALe:AVERage[:STATe]?

[:SOURce]:RADio:ARB:SAMPle:PERiod <int>

[:SOURce]:RADio:ARB:SAMPle:PERiod?

[:SOURce]:RADio:ARB:SAMPle:OFFSet <int>

[:SOURce]:RADio:ARB:SAMPle:OFFSet?

[:SOURce]:RADio:ARB:SAMPle:COUNt <int>

[:SOURce]:RADio:ARB:SAMPle:COUNt?

[:SOURce]:RADio:ARB:WAVeform?

[:SOURce]:RADio:ARB:WAVeform:LENgth?

[:SOURce]:RADio:ARB:WAVeform:LOAD:CSV <filename>

[:SOURce]:RADio:ARB:WAVeform:LOAD:BINSC <filename>

[:SOURce]:RADio:ARB:WAVeform:LOAD:BINFC <filename>

[:SOURce]:RADio:ARB:WAVeform:LOAD:MIDAS <filename>

[:SOURce]:RADio:ARB:WAVeform:LOAD:IQ:ASCII <I1>, <Q1>, <I2>,

<Q2>, …, <In>, <Qn>

[:SOURce]:RADio:ARB:WAVeform:LOAD?

[:SOURce]:RADio:ARB:WAVeform:UNLOAD

Description STATe, Enable/disable the Arb output mode.

TRIGger:TYPE, Set the trigger mode for Arb output.

SRATe, Set the Arb output sample rate.

IQ:SCALe:AUTO:STATe, Enable/disable auto I/Q scaling.

IQ:SCALe, Set the I/Q scale to be used when auto scaling is disabled.

IQ:SCALe:AVERage:STATe, Enable/disable how to calculate the output power of

the signal.

SAMPle:PERiod, Set the waveform period in samples. Period is calculated after

accounting for the offset and count.

SAMPle:OFFSet, Set the waveform offset in samples. Specifies how many samples

into the loaded waveform to start playback. Between offset and count, this allows

users to only play a portion of the loaded waveform.

SAMPle:COUNt, Specify the number of samples after the offset to output. Between

offset and count, this allows users to only play a portion of the loaded waveform.

WAVeform?, Queries the name of the loaded waveform. Returns an empty string is

no file is loaded.

WAVeform:LENgth?, Returns the total number of samples in the loaded waveform.

The number returned does not include the offset and count values specified above. If

no file is loaded, this returns 0.

LOAD, Loads various file types. The file name provided must specify a file that

matches the file type specified by the load SCPI function used. See the software UI

manual for more information.

LOAD:BINSC, Loads 16-bit complex integer binary file with provided filename.

LOAD:BINFC, Loads 32-bit complex float binary file with provided filename.

LOAD:IQ:ASCII, Load an I/Q waveform sent over SCPI. The I/Q values should be

provided as alternating I/Q complex values, each I and Q value sent as a separate

SCPI parameter, as ascii. A comma should separate all I/Q values. A comma should

not be placed after the last Q value. An error will be thrown if an odd number of

parameters is provided. See example below and programming example for usage.

LOAD?, Returns 1 if a waveform is loaded.

UNLOAD, Unloads any loaded waveform.

Examples RAD:ARB ON

RAD:ARB:TRIG:TYPE SING

RAD:ARB:SRAT 10MHz

RAD:ARB:IQ:SCALE:AUTO ON

RAD:ARB:IQ:SCALE 50

RAD:ARB:IQ:SCALE:AVERAGE OFF

RAD:ARB:SAMPLE:PERIOD 10000

RADIO:ARB:SAMPLE:OFFSET 1024

RAD:ARB:SAMP:OFFS?

RAD:ARB:SAMP:COUNT 5000

RAD:ARB:WAV?

RAD:ARB:WAVEFORM:LENGTH?

RAD:ARB:WAV:LOAD:CSV “file.csv”

Please note, that the quotations must appear in the command. If using a

programming language like C/C++, you must escape sequence the quote in the

string, for example

“RAD:ARB:WAV:LOAD:CSV \”file.csv\””

RAD:ARB:WAV:LOAD:BINFC “file.bin”

RAD:ARB:WAV:LOAD:IQ:ASCII 1.0, 0.0, 1.0, 0.0, -1.0, 0,0, -1,0,

0,0

<This line loaded an I/Q waveform with 4 I/Q samples where the first two samples

were (1.0,0.0) and the last two samples were (-1.0, 0.0)> See the programming

examples for another example of using this function.

RAD:ARB:WAV:LOAD?

RAD:ARB:WAV:UNLOAD

Software

Controls

Arb Controls -> Enabled

Arb Controls -> Trigger Mode

Arb Controls -> Sample Rate

Arb Controls -> Auto Scale

Arb Controls -> I/Q Scale (%)

Arb Controls -> Output Signal Average

Arb Controls -> Period

Arb Controls -> Sample Offset

Arb Controls -> Samples to Use

Arb Controls -> Samples in File

Arb Controls -> Load

Arb Controls -> Unload File

Couplings None

Preset No file loaded.

Notes None

