

Spectrum Analyzers and Signal
Generators in LabVIEW
User Guide

ii

User’s Guide to Using Signal Hound Spectrum Analyzers and Signal Generators in LabVIEW

©2019, Signal Hound

1502 SE Commerce Ave, Suite 101

Battle Ground, WA

Phone 360-217-0112

iii

Contents
1 Overview .. 1

2 Preparation .. 1

3 Usage ... 3

4 Examples ... 9

5 Information & Support ... 9

Overview | Requirements

1

1 Overview
This document outlines the process of interfacing Signal Hound spectrum analyzers and signal generators

in National Instruments LabVIEW software.

2 Preparation
2.1 REQUIREMENTS

The following items are required to interface Signal Hound devices in LabVIEW:

• A Signal Hound spectrum analyzer (SM200A/B, BB60A/C, SA44(B), SA124A/B) or signal

generator (VSG25A, VSG60A, TG44A, TG124A) with required USB cables (*SA44(B),

SA124A/B, and VSG25A cannot be used on Linux)

• National Instruments LabVIEW software

• A Windows 7/8/10 computer meeting minimum requirements to run Spike software (see

Spike Manual for details)

or

• An equivalent 64-bit Linux computer

2.2 INSTALLATION
2.2.1 Software Installation
2.2.1.1 Windows

• Install Spike.

or

• Install VSG60 Software.

• Install LabVIEW.

2.2.1.2 Linux
• Install API for BB Series, SM Series, or TG Series.

• Install LabVIEW.

https://signalhound.com/sigdownloads/Spike/Spike-User-Manual.pdf
https://signalhound.com/spike/
https://signalhound.com/support/product-downloads/vsg60a-downloads/
https://signalhound.com/software/signal-hound-software-development-kit-sdk/
https://signalhound.com/software/signal-hound-software-development-kit-sdk/
https://signalhound.com/software/signal-hound-software-development-kit-sdk/

Preparation | Installation

2

2.2.2 Device Connection
2.2.2.1 Windows

Refer to the Spike Manual or the VSG60A Manual to get your Signal Hound device connected

and running with your computer. When working properly in Spike or the VSG60A software you

are ready to use in LabVIEW.

2.2.2.2 Linux
Refer to the README in the API download to get your Signal Hound device connected and running with

your computer.

2.2.3 Signal Hound Instrument Drivers
To install Signal Hound instrument drivers in LabVIEW, simply place the Signal Hound driver folder (eg.

Signal Hound BB Series) in the LabVIEW instrument drivers directory, instr.lib, located in the LabVIEW

root directory:

2.2.3.1 Windows with 32-bit LabVIEW
C:\Program Files (x86)\National Instruments\LabVIEW 2016\instr.lib

2.2.3.2 Windows with 64-bit Labview
C:\Program Files\National Instruments\LabVIEW 2016\instr.lib

In the Signal Hound driver folder, you will need to rename the 64-bit DLL and either delete or rename the

32-bit DLL.

For example, for the BB series, rename bb_api.dll to bb_api-32.dll, and rename bb_api-64.dll to

bb_api.dll.

2.2.3.3 Linux
/usr/local/natinst/LabVIEW-2016-64/instr.lib

https://signalhound.com/sigdownloads/Spike/Spike-User-Manual.pdf
http://www.signalhound.com/sigdownloads/VSG60/VSG60-Software-Manual.pdf

Usage | Palette Navigation

3

3 Usage
3.1 PALETTE NAVIGATION

3.1.1 Accessing the Functions Palette
Block diagrams are built using the functions and VIs on the Functions palette (Fig. 1). To bring up the

Functions palette, select View >> Functions Palette or right-click anywhere on the block diagram

workspace.

Figure 1. The LabVIEW Functions palette

Usage | Palette Navigation

4

3.1.2 Accessing the Signal Hound Subpalette
To access the Signal Hound instrument driver subpalette (Fig. 2) from the Functions palette, navigate to

Instrument I/O >> Instr Drivers. Any installed Signal Hound instrument drivers will appear as icons here

(eg. Signal Hound SA Series).

**Tip: Clicking the pin icon in the upper left corner of the subpalette will cause the subpalette to remain visible

on the block diagram workspace.

Figure 2. The Signal Hound BB Series subpalette

3.1.3 Signal Hound Subpalette Organization
Signal Hound instrument drivers follow a LabVIEW standard organizational hierarchy. The top level

contains primary functions and subpalettes which group VIs into four categories: Configure, Action-

Status, Data, and Utility.

3.1.3.1 Top Level
The top level of the Signal Hound instrument driver hierarchy contains primary functions to open and

close the device, and the VI Tree.

The VI Tree (Fig. 3) is useful to see an overall view of all VIs in the driver, and where they are located. All

VIs can be accessed from the block diagram workspace of the VI Tree.

3.1.3.2 Configure
This subpalette contains VIs used to configure the device, including preset routines.

Usage | Palette Navigation

5

For Signal Hound spectrum analyzers, two convenience VIs are provided which consolidate common

configuration routines: Quick Configure Sweep and Quick Configure IQ. These contain a chain of

configuration VIs (eg. Configure Center Span → Configure Level), followed by device initiation and a

query which returns relevant information. All sub-VIs handle errors and pass the result out.

3.1.3.3 Action-Status
This subpalette contains VIs used to query and return info about the device status, and to execute certain

commands.

3.1.3.4 Data
This subpalette contains VIs used to acquire data. It also contains VIs to initiate the device for acquisition

using the current configuration, and to abort the current acquisition and configuration.

3.1.3.5 Utility
This subpalette contains VIs used to get critical information about the device, such as diagnostics, firmware

version, and serial number. It also may contain convenience functions to perform useful numerical

conversions.

Figure 3. The Signal Hound SA Series VI Tree block diagram workspace

Usage | Session IDs

6

3.2 SESSION IDS
When a device is opened, a new session is started and given an integer handle. This handle is then used

to identify the device to all device-specific VIs.

Every device-specific VI inputs and outputs a session ID on its uppermost terminals. These are typically

chained together in successive VIs (Fig. 4).

Figure 4. Chaining together the device ID and error line of successive VIs

3.3 ERROR HANDLING
Every VI inputs and outputs an error cluster on its lower terminals. These should be chained together in

successive VIs, so that an error event propagates (Fig. 4).

**Tip: Automatically wire together VIs by dragging a VI from the functions palette and, before dropping it on the

block diagram workspace, hover it near another VI with compatible terminals until wires appear between them.

Drop the VI and the compatible terminals will be connected.

In a simple approach to error handling, the error line can be wired to a case structure to control the

execution path, bypassing blocks in the event of an error (Fig. 5). This is the approach used for Signal

Hound sub-VIs.

Figure 5. Error handling using a Case structure

Usage | Data Acquisition

7

3.4 DATA ACQUISITION
3.4.1 Memory Allocation
Most Signal Hound acquisition VIs (eg. Get Sweep) take pointers to arrays as parameters. These arrays

must be pre-allocated with enough space to hold the data requested.

3.4.1.1 Initialize Array
Array allocation can be accomplished by using the Initialize Array VI, located in the Array subpalette of

the Functions palette.

To use Initialize Array, wire a constant of the data type the array is to hold (eg. a double-precision floating

point number for a C double; a single-precision floating point number for a C float) to the element

terminal, and the array size needed to the dimension size terminal (Fig. 6).

Typically, a return parameter from a query function specifying the array size needed would be wired to

dimension size. For example, sweepLength, returned by QuerySweepInfo and Quick Configure

Sweep.

The output of Initialize Array can be connected directly to the data array terminal of the Signal Hound

acquisition VI, which will automatically interpret it as an address pointer. Likewise, the address will be

dereferenced automatically on output, so that the output of the VI is an array containing the acquired data.

Figure 6. Allocating an array for a sweep

3.4.1.2 Clusters and IQ Data
In handling IQ data Signal Hound APIs use a struct typedef called IQPacket to hold associated variables,

including a pointer to the data array. Because it can be unwieldy to work with dynamically allocated arrays

inside clusters in LabVIEW, Signal Hound provides a VI that uses free parameters—Get IQ Data

Unpacked.

Get IQ Data Unpacked is always the fastest way to acquire IQ data. On a computer with sufficient

processing power sample rates should approach the limits of the device.

Usage | Multi-Threading

8

3.4.2 Continuous Acquisition
3.4.2.1 Loops
Continuous data acquisition can be accomplished using loop structures. Loop structures are found in the

Structures subpalette of the Functions palette. The most commonly used loop structures are For and

While loops.

For loops perform a set number of iterations, whereas While loops iterate as long as some condition is

true.

Typically, a Stop Button (Controls Palette >> Boolean) and the status component of an error line are

wired to an OR gate (Functions Palette >> Boolean), which is in turn wired to the While loop’s

Conditional Terminal (Fig. 7). That way loop execution halts when either there is an error in an enclosed

VI or the user chooses to stop execution by breaking out of the loop.

Figure 7. Typical wiring for the Conditional Terminal of a While loop

3.4.2.2 Using Loops in Your Block Diagram
There are several ways to use loops in your block diagram to continuously acquire data; the differentiating

factor is which VIs you enclose in the loop.

For fast data acquisition, enclose only the acquisition VI and whatever VIs are being used to process and/or

plot the data. Configuration, initiation, and allocation should be done before entering the loop, with

variables entering the loop through a Loop Tunnel. A Loop Tunnel is created automatically when a wire

crosses a loop boundary when connecting two terminals.

If interactivity is favored over speed, the loop can enclose configuration and acquisition. In this scenario

the device is reconfigured and memory re-allocated at the start of each iteration, which is more resource-

intensive and slower.

Alternatively, control structures (such as a Case structure) could be set up so that re-configuration only

takes place when a setting is changed.

3.5 MULTI-THREADING
To avoid blocking the main GUI thread, all calls to API functions in Signal Hound VIs run "in any thread."

This allows user interaction with the GUI to continue during execution of an application that is continuously

collecting data and updating the screen.

Examples | Accessing Examples

9

4 Examples
Each Signal Hound instrument driver provides examples that demonstrate many of the use cases

discussed in this manual.

4.1 ACCESSING EXAMPLES
To open Signal Hound example VIs, select Help >> Find Examples…, and either use the Search tab to

search for “SignalHound” or in the Browse tab locate the examples under Analysis, Signal Processing

and Mathematics >> Signal Processing (Signal Hound example VIs begin with “Signal Hound”).

5 Information & Support
5.1 INFORMATION

Release and meta information is available in the Readme file located at the top level of the instrument

driver folder.

5.2 SUPPORT
The first troubleshooting step is always to power cycle the device and restart LabVIEW.

You may need to install the Visual C++ Redistributable for Visual Studio 2012.

For support contact support@signalhound.com.

https://www.microsoft.com/en-us/download/details.aspx?id=30679
mailto:support@signalhound.com

